Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

A generalization of PLDA for joint modeling of speaker identity and multiple nuisance conditions

Ferrer, LucianaIcon ; McLaren, Mitchell
Tipo del evento: Conferencia
Nombre del evento: 19th Annual Conference of the International Speech Communication Association: Speech research for emerging markets in multilingual societies
Fecha del evento: 02/09/2018
Institución Organizadora: International Speech Communication Association;
Título del Libro: Proc. Interspeech 2018
Título de la revista: Proc. Interspeech 2018
Editorial: International Speech Communication Association
Idioma: Inglés
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Probabilistic linear discriminant analysis (PLDA) is the leading method for computing scores in speaker recognition systems. The method models the vectors representing each audio sample as a sum of three terms: one that depends on the speaker identity, one that models the within-speaker variability, and one that models any remaining variability. The last two terms are assumed to be independent across samples. We recently proposed anextension of the PLDAmethod, whichwetermedJoint PLDA (JPLDA), where the second term is considered dependent on the type of nuisance condition present in the data (e.g., the language or channel). The proposed method led to significant gains for multilanguage speaker recognition when taking language as the nuisance condition. In this paper, we present a generalization of this approach that allows for multiple nuisance terms. We show results using language and several nuisance conditions describing the acoustic characteristics of the sample and demonstrate that jointly including all these factors in the model leads to better results than including only language or acoustic condition factors. Overall, we obtain relative improvements in detection cost function between 5% and 47% for various systems and test conditions with respect to standard PLDA approaches.
Palabras clave: SPEAKER RECOGNITION , PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 270.2Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/162954
URL: https://www.isca-speech.org/archive/interspeech_2018/ferrer18_interspeech.html
DOI: http://dx.doi.org/10.21437/Interspeech.2018-1280
Colecciones
Eventos(OCA CIUDAD UNIVERSITARIA)
Eventos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
A generalization of PLDA for joint modeling of speaker identity and multiple nuisance conditions; 19th Annual Conference of the International Speech Communication Association: Speech research for emerging markets in multilingual societies; Hyderabad; India; 2018; 82-86
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES