Mostrar el registro sencillo del ítem
dc.contributor.author
Ferrer, Luciana
dc.contributor.author
McLaren, Mitchell
dc.date.available
2022-07-22T19:35:03Z
dc.date.issued
2018
dc.identifier.citation
A generalization of PLDA for joint modeling of speaker identity and multiple nuisance conditions; 19th Annual Conference of the International Speech Communication Association: Speech research for emerging markets in multilingual societies; Hyderabad; India; 2018; 82-86
dc.identifier.uri
http://hdl.handle.net/11336/162954
dc.description.abstract
Probabilistic linear discriminant analysis (PLDA) is the leading method for computing scores in speaker recognition systems. The method models the vectors representing each audio sample as a sum of three terms: one that depends on the speaker identity, one that models the within-speaker variability, and one that models any remaining variability. The last two terms are assumed to be independent across samples. We recently proposed anextension of the PLDAmethod, whichwetermedJoint PLDA (JPLDA), where the second term is considered dependent on the type of nuisance condition present in the data (e.g., the language or channel). The proposed method led to significant gains for multilanguage speaker recognition when taking language as the nuisance condition. In this paper, we present a generalization of this approach that allows for multiple nuisance terms. We show results using language and several nuisance conditions describing the acoustic characteristics of the sample and demonstrate that jointly including all these factors in the model leads to better results than including only language or acoustic condition factors. Overall, we obtain relative improvements in detection cost function between 5% and 47% for various systems and test conditions with respect to standard PLDA approaches.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
International Speech Communication Association
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
SPEAKER RECOGNITION
dc.subject
PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A generalization of PLDA for joint modeling of speaker identity and multiple nuisance conditions
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2022-07-20T15:59:25Z
dc.journal.pagination
82-86
dc.journal.pais
India
dc.journal.ciudad
Hyderabad
dc.description.fil
Fil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
dc.description.fil
Fil: McLaren, Mitchell. Sri International. Speech Technology and Research Lab; Estados Unidos
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.isca-speech.org/archive/interspeech_2018/ferrer18_interspeech.html
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.21437/Interspeech.2018-1280
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Conferencia
dc.description.nombreEvento
19th Annual Conference of the International Speech Communication Association: Speech research for emerging markets in multilingual societies
dc.date.evento
2018-09-02
dc.description.ciudadEvento
Hyderabad
dc.description.paisEvento
India
dc.type.publicacion
Book
dc.description.institucionOrganizadora
International Speech Communication Association
dc.source.libro
Proc. Interspeech 2018
dc.source.revista
Proc. Interspeech 2018
dc.date.eventoHasta
2018-09-06
dc.type
Conferencia
Archivos asociados