Mostrar el registro sencillo del ítem
dc.contributor.author
Miranda, Alfredo Manuel
dc.contributor.author
Rossi, Julio Daniel
dc.date.available
2022-07-21T13:53:45Z
dc.date.issued
2022-03
dc.identifier.citation
Miranda, Alfredo Manuel; Rossi, Julio Daniel; A game theoretical approximation for solutions to nonlinear systems with obstacle-type equations; Springer; SeMA Journal; 3-2022; 1-44
dc.identifier.issn
2254-3902
dc.identifier.uri
http://hdl.handle.net/11336/162781
dc.description.abstract
In this paper we find viscosity solutions to a coupled system composed by two equations, the first one is an obstacle type equation, min{−1 ∞u(x), (u − v)(x)} = 0, and the second one is −v(x) + v(x) − u(x) = h(x) in a smooth bounded domain with Dirichlet boundary conditions u(x) = f (x), v(x) = g(x) for x ∈ ∂. Here −1 ∞u is the ∞−Laplacian and −v is the standard Laplacian. This system is not variational and involves two different elliptic operators. Notice that in the first equation the obstacle is given by the second component of the system that also depends on the first component via the second equation (this system is fully coupled). We prove that there is a two-player zero-sum game played in two different boards with different rules in each board. In the first one one of the players decides to play a round of a Tug-of-War game or to change boards and in the second board we play a random walk with the possibility of changing boards with a positive (but small) probability and a running payoff. We show that this game has two value functions (one for each board) that converge uniformly to the components of a viscosity solution to the PDE system.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Partial differential Equations
dc.subject
Obstacle type Equations
dc.subject
Game theory
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A game theoretical approximation for solutions to nonlinear systems with obstacle-type equations
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-07-20T15:15:37Z
dc.identifier.eissn
2281-7875
dc.journal.pagination
1-44
dc.journal.pais
Suiza
dc.journal.ciudad
Cham
dc.description.fil
Fil: Miranda, Alfredo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.description.fil
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.journal.title
SeMA Journal
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s40324-022-00292-3
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s40324-022-00292-3
Archivos asociados