Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A game theoretical approximation for solutions to nonlinear systems with obstacle-type equations

Miranda, Alfredo ManuelIcon ; Rossi, Julio DanielIcon
Fecha de publicación: 03/2022
Editorial: Springer
Revista: SeMA Journal
ISSN: 2254-3902
e-ISSN: 2281-7875
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

In this paper we find viscosity solutions to a coupled system composed by two equations, the first one is an obstacle type equation, min{−1 ∞u(x), (u − v)(x)} = 0, and the second one is −v(x) + v(x) − u(x) = h(x) in a smooth bounded domain with Dirichlet boundary conditions u(x) = f (x), v(x) = g(x) for x ∈ ∂. Here −1 ∞u is the ∞−Laplacian and −v is the standard Laplacian. This system is not variational and involves two different elliptic operators. Notice that in the first equation the obstacle is given by the second component of the system that also depends on the first component via the second equation (this system is fully coupled). We prove that there is a two-player zero-sum game played in two different boards with different rules in each board. In the first one one of the players decides to play a round of a Tug-of-War game or to change boards and in the second board we play a random walk with the possibility of changing boards with a positive (but small) probability and a running payoff. We show that this game has two value functions (one for each board) that converge uniformly to the components of a viscosity solution to the PDE system.
Palabras clave: Partial differential Equations , Obstacle type Equations , Game theory
Ver el registro completo
 
Archivos asociados
Tamaño: 534.4Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/162781
URL: https://link.springer.com/10.1007/s40324-022-00292-3
DOI: http://dx.doi.org/10.1007/s40324-022-00292-3
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Miranda, Alfredo Manuel; Rossi, Julio Daniel; A game theoretical approximation for solutions to nonlinear systems with obstacle-type equations; Springer; SeMA Journal; 3-2022; 1-44
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES