Mostrar el registro sencillo del ítem
dc.contributor.author
Miranda, Alfredo Manuel
dc.contributor.author
Rossi, Julio Daniel
dc.date.available
2022-07-21T13:38:23Z
dc.date.issued
2022-01
dc.identifier.citation
Miranda, Alfredo Manuel; Rossi, Julio Daniel; A game theoretical approximation for a parabolic/elliptic system with different operators; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 2022; 1-2022; 1-32
dc.identifier.issn
1078-0947
dc.identifier.uri
http://hdl.handle.net/11336/162769
dc.description.abstract
In this paper we find viscosity solutions to a coupled system composed by two equations, the first one is parabolic and driven by the infinity Laplacian while the second one is elliptic and involves the usual Laplacian. We prove that there is a two-player zero-sum game played in two different boards with different rules in each board (in the first one we play a Tug-of-War game taking the number of plays into consideration and in the second board we move at random) whose value functions converge uniformly to a viscosity solution to the PDE system.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Institute of Mathematical Sciences
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
PARABOLIC
dc.subject
ELLIPTIC
dc.subject
VISCOSITY SOLUTION
dc.subject
PROBABILISTIC APPROACH
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A game theoretical approximation for a parabolic/elliptic system with different operators
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-07-20T15:15:34Z
dc.journal.volume
2022
dc.journal.pagination
1-32
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Springfield
dc.description.fil
Fil: Miranda, Alfredo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.description.fil
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.journal.title
Discrete And Continuous Dynamical Systems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/article/doi/10.3934/dcds.2022034
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3934/dcds.2022034
Archivos asociados