Mostrar el registro sencillo del ítem

dc.contributor.author
Miranda, Alfredo Manuel  
dc.contributor.author
Rossi, Julio Daniel  
dc.date.available
2022-07-21T13:38:23Z  
dc.date.issued
2022-01  
dc.identifier.citation
Miranda, Alfredo Manuel; Rossi, Julio Daniel; A game theoretical approximation for a parabolic/elliptic system with different operators; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 2022; 1-2022; 1-32  
dc.identifier.issn
1078-0947  
dc.identifier.uri
http://hdl.handle.net/11336/162769  
dc.description.abstract
In this paper we find viscosity solutions to a coupled system composed by two equations, the first one is parabolic and driven by the infinity Laplacian while the second one is elliptic and involves the usual Laplacian. We prove that there is a two-player zero-sum game played in two different boards with different rules in each board (in the first one we play a Tug-of-War game taking the number of plays into consideration and in the second board we move at random) whose value functions converge uniformly to a viscosity solution to the PDE system.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Mathematical Sciences  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
PARABOLIC  
dc.subject
ELLIPTIC  
dc.subject
VISCOSITY SOLUTION  
dc.subject
PROBABILISTIC APPROACH  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A game theoretical approximation for a parabolic/elliptic system with different operators  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-07-20T15:15:34Z  
dc.journal.volume
2022  
dc.journal.pagination
1-32  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Springfield  
dc.description.fil
Fil: Miranda, Alfredo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.journal.title
Discrete And Continuous Dynamical Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/article/doi/10.3934/dcds.2022034  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3934/dcds.2022034