Artículo
A game theoretical approximation for a parabolic/elliptic system with different operators
Fecha de publicación:
01/2022
Editorial:
American Institute of Mathematical Sciences
Revista:
Discrete And Continuous Dynamical Systems
ISSN:
1078-0947
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we find viscosity solutions to a coupled system composed by two equations, the first one is parabolic and driven by the infinity Laplacian while the second one is elliptic and involves the usual Laplacian. We prove that there is a two-player zero-sum game played in two different boards with different rules in each board (in the first one we play a Tug-of-War game taking the number of plays into consideration and in the second board we move at random) whose value functions converge uniformly to a viscosity solution to the PDE system.
Palabras clave:
PARABOLIC
,
ELLIPTIC
,
VISCOSITY SOLUTION
,
PROBABILISTIC APPROACH
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Miranda, Alfredo Manuel; Rossi, Julio Daniel; A game theoretical approximation for a parabolic/elliptic system with different operators; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 2022; 1-2022; 1-32
Compartir
Altmétricas