Mostrar el registro sencillo del ítem

dc.contributor.author
Bura, Efstathia  
dc.contributor.author
Duarte, S.  
dc.contributor.author
Forzani, Liliana Maria  
dc.contributor.author
Smucler, Ezequiel  
dc.contributor.author
Sued, Raquel Mariela  
dc.date.available
2022-07-15T15:47:38Z  
dc.date.issued
2018-09  
dc.identifier.citation
Bura, Efstathia; Duarte, S.; Forzani, Liliana Maria; Smucler, Ezequiel; Sued, Raquel Mariela; Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models; Taylor & Francis Ltd; Statistics; 52; 5; 9-2018; 1005-1024  
dc.identifier.issn
0233-1888  
dc.identifier.uri
http://hdl.handle.net/11336/162204  
dc.description.abstract
Reduced-rank regression is a dimensionality reduction method with many applications. The asymptotic theory for reduced rank estimators of parameter matrices in multivariate linear models has been studied extensively. In contrast, few theoretical results are available for reduced-rank multivariate generalized linear models. We develop M-estimation theory for concave criterion functions that are maximized over parameter spaces that are neither convex nor closed. These results are used to derive the consistency and asymptotic distribution of maximum likelihood estimators in reduced-rank multivariate generalized linear models, when the response and predictor vectors have a joint distribution. We illustrate our results in a real data classification problem with binary covariates.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
EXPONENTIAL FAMILY  
dc.subject
M-ESTIMATION  
dc.subject
NON-CONVEX  
dc.subject
PARAMETER SPACES  
dc.subject
RANK RESTRICTION  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-07-15T15:00:45Z  
dc.journal.volume
52  
dc.journal.number
5  
dc.journal.pagination
1005-1024  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Bura, Efstathia. The George Washington University; Estados Unidos. Vienna University of Technology; Austria  
dc.description.fil
Fil: Duarte, S.. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina  
dc.description.fil
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina  
dc.description.fil
Fil: Smucler, Ezequiel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Statistics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/02331888.2018.1467420  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/02331888.2018.1467420