Artículo
Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models
Fecha de publicación:
09/2018
Editorial:
Taylor & Francis Ltd
Revista:
Statistics
ISSN:
0233-1888
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Reduced-rank regression is a dimensionality reduction method with many applications. The asymptotic theory for reduced rank estimators of parameter matrices in multivariate linear models has been studied extensively. In contrast, few theoretical results are available for reduced-rank multivariate generalized linear models. We develop M-estimation theory for concave criterion functions that are maximized over parameter spaces that are neither convex nor closed. These results are used to derive the consistency and asymptotic distribution of maximum likelihood estimators in reduced-rank multivariate generalized linear models, when the response and predictor vectors have a joint distribution. We illustrate our results in a real data classification problem with binary covariates.
Palabras clave:
EXPONENTIAL FAMILY
,
M-ESTIMATION
,
NON-CONVEX
,
PARAMETER SPACES
,
RANK RESTRICTION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Bura, Efstathia; Duarte, S.; Forzani, Liliana Maria; Smucler, Ezequiel; Sued, Raquel Mariela; Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models; Taylor & Francis Ltd; Statistics; 52; 5; 9-2018; 1005-1024
Compartir
Altmétricas