Mostrar el registro sencillo del ítem

dc.contributor.author
Dubinsky, Manuel  
dc.contributor.author
Massri, Cesar Dario  
dc.contributor.author
Taubin, Gabriel  
dc.date.available
2022-07-14T14:55:43Z  
dc.date.issued
2021-05  
dc.identifier.citation
Dubinsky, Manuel; Massri, Cesar Dario; Taubin, Gabriel; Minimum Spanning Tree Cycle Intersection problem; Elsevier Science; Discrete Applied Mathematics; 294; 5-2021; 152-166  
dc.identifier.issn
0166-218X  
dc.identifier.uri
http://hdl.handle.net/11336/162141  
dc.description.abstract
Consider a connected graph G and let T be a spanning tree of G. Every edge e∈G−T induces a cycle in T∪{e}. The intersection of two distinct such cycles is the set of edges of T that belong to both cycles. We consider the problem of finding a spanning tree that has the least number of such non-empty intersections. In this article we analyze the particular case of complete graphs, and formulate a conjecture for graphs that have a universal vertex.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CYCLE BASES  
dc.subject
GRAPHS  
dc.subject
SPANNING TREES  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Minimum Spanning Tree Cycle Intersection problem  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-04-28T14:20:15Z  
dc.journal.volume
294  
dc.journal.pagination
152-166  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Dubinsky, Manuel. Universidad Nacional de Avellaneda; Argentina  
dc.description.fil
Fil: Massri, Cesar Dario. Universidad de Caece; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Taubin, Gabriel. University Brown; Estados Unidos  
dc.journal.title
Discrete Applied Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.dam.2021.01.031  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X21000469