Artículo
Minimum Spanning Tree Cycle Intersection problem
Fecha de publicación:
05/2021
Editorial:
Elsevier Science
Revista:
Discrete Applied Mathematics
ISSN:
0166-218X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Consider a connected graph G and let T be a spanning tree of G. Every edge e∈G−T induces a cycle in T∪{e}. The intersection of two distinct such cycles is the set of edges of T that belong to both cycles. We consider the problem of finding a spanning tree that has the least number of such non-empty intersections. In this article we analyze the particular case of complete graphs, and formulate a conjecture for graphs that have a universal vertex.
Palabras clave:
CYCLE BASES
,
GRAPHS
,
SPANNING TREES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Dubinsky, Manuel; Massri, Cesar Dario; Taubin, Gabriel; Minimum Spanning Tree Cycle Intersection problem; Elsevier Science; Discrete Applied Mathematics; 294; 5-2021; 152-166
Compartir
Altmétricas