Mostrar el registro sencillo del ítem

dc.contributor.author
Lerner, Andrei K.  
dc.contributor.author
Lorist, Emiel  
dc.contributor.author
Ombrosi, Sheldy Javier  
dc.date.available
2022-07-13T15:16:41Z  
dc.date.issued
2022-02-28  
dc.identifier.citation
Lerner, Andrei K.; Lorist, Emiel; Ombrosi, Sheldy Javier; Operator-free sparse domination; Cambridge; Forum of Mathematics. Sigma; 10; 28-2-2022; 1-28  
dc.identifier.uri
http://hdl.handle.net/11336/162017  
dc.description.abstract
We obtain a sparse domination principle for an arbitrary family of functions f(x,Q) , where x∈Rn and Q is a cube in Rn . When applied to operators, this result recovers our recent works [37, 39]. On the other hand, our sparse domination principle can be also applied to non-operator objects. In particular, we show applications to generalised Poincaré–Sobolev inequalities, tent spaces and general dyadic sums. Moreover, the flexibility of our result allows us to treat operators that are not localisable in the sense of [39], as we will demonstrate in an application to vector-valued square functions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Cambridge  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SPARSE  
dc.subject
DOMINATION  
dc.subject
MAXIMAL  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Operator-free sparse domination  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-07-04T19:18:51Z  
dc.identifier.eissn
2050-5094  
dc.journal.volume
10  
dc.journal.pagination
1-28  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Lerner, Andrei K.. Bar-ilan University; Israel  
dc.description.fil
Fil: Lorist, Emiel. University of Helsinki; Finlandia  
dc.description.fil
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.journal.title
Forum of Mathematics. Sigma  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/product/identifier/S2050509422000081/type/journal_article  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1017/fms.2022.8  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2106.16202