Mostrar el registro sencillo del ítem
dc.contributor.author
Lerner, Andrei K.
dc.contributor.author
Lorist, Emiel
dc.contributor.author
Ombrosi, Sheldy Javier
dc.date.available
2022-07-13T15:16:41Z
dc.date.issued
2022-02-28
dc.identifier.citation
Lerner, Andrei K.; Lorist, Emiel; Ombrosi, Sheldy Javier; Operator-free sparse domination; Cambridge; Forum of Mathematics. Sigma; 10; 28-2-2022; 1-28
dc.identifier.uri
http://hdl.handle.net/11336/162017
dc.description.abstract
We obtain a sparse domination principle for an arbitrary family of functions f(x,Q) , where x∈Rn and Q is a cube in Rn . When applied to operators, this result recovers our recent works [37, 39]. On the other hand, our sparse domination principle can be also applied to non-operator objects. In particular, we show applications to generalised Poincaré–Sobolev inequalities, tent spaces and general dyadic sums. Moreover, the flexibility of our result allows us to treat operators that are not localisable in the sense of [39], as we will demonstrate in an application to vector-valued square functions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Cambridge
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
SPARSE
dc.subject
DOMINATION
dc.subject
MAXIMAL
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Operator-free sparse domination
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-07-04T19:18:51Z
dc.identifier.eissn
2050-5094
dc.journal.volume
10
dc.journal.pagination
1-28
dc.journal.pais
Reino Unido
dc.description.fil
Fil: Lerner, Andrei K.. Bar-ilan University; Israel
dc.description.fil
Fil: Lorist, Emiel. University of Helsinki; Finlandia
dc.description.fil
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.journal.title
Forum of Mathematics. Sigma
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/product/identifier/S2050509422000081/type/journal_article
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1017/fms.2022.8
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2106.16202
Archivos asociados