Artículo
Operator-free sparse domination
Fecha de publicación:
28/02/2022
Editorial:
Cambridge
Revista:
Forum of Mathematics. Sigma
e-ISSN:
2050-5094
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We obtain a sparse domination principle for an arbitrary family of functions f(x,Q) , where x∈Rn and Q is a cube in Rn . When applied to operators, this result recovers our recent works [37, 39]. On the other hand, our sparse domination principle can be also applied to non-operator objects. In particular, we show applications to generalised Poincaré–Sobolev inequalities, tent spaces and general dyadic sums. Moreover, the flexibility of our result allows us to treat operators that are not localisable in the sense of [39], as we will demonstrate in an application to vector-valued square functions.
Palabras clave:
SPARSE
,
DOMINATION
,
MAXIMAL
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Lerner, Andrei K.; Lorist, Emiel; Ombrosi, Sheldy Javier; Operator-free sparse domination; Cambridge; Forum of Mathematics. Sigma; 10; 28-2-2022; 1-28
Compartir
Altmétricas