Mostrar el registro sencillo del ítem

dc.contributor.author
Cortiñas, Guillermo Horacio  
dc.contributor.author
Montero, Diego  
dc.date.available
2022-07-12T20:14:56Z  
dc.date.issued
2021-02-02  
dc.identifier.citation
Cortiñas, Guillermo Horacio; Montero, Diego; Algebraic bivariant K-theory and Leavitt path algebras; European Mathematical Society; Journal of Noncommutative Geometry; 25; 1; 2-2-2021; 113-146  
dc.identifier.issn
1661-6952  
dc.identifier.uri
http://hdl.handle.net/11336/161955  
dc.description.abstract
We investigate to what extent homotopy invariant, excisive and matrix stable homology theories help one distinguish between the Leavitt path algebras L.E/ and L.F / of graphs E and F over a commutative ground ring `. We approach this by studying the structure of such algebras under bivariant algebraic K-theory kk, which is the universal homology theory with the properties above. We show that under very mild assumptions on `, for a graph E with finitely many vertices and reduced incidence matrix AE, the structure of L.E/ in kk depends only on the groups Coker.I AE/ and Coker.I A t E/. We also prove that for Leavitt path algebras, kk has several properties similar to those that Kasparov’s bivariant K-theory has for C -graph algebras, including analogues of the Universal coefficient and Künneth theorems of Rosenberg and Schochet  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
European Mathematical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Leavitt path algebras  
dc.subject
Classification  
dc.subject
Algebraic bivariant K-theory  
dc.subject
Universal coefficient theorem  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Algebraic bivariant K-theory and Leavitt path algebras  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-04-28T14:14:19Z  
dc.identifier.eissn
1661-6960  
dc.journal.volume
25  
dc.journal.number
1  
dc.journal.pagination
113-146  
dc.journal.pais
Suiza  
dc.journal.ciudad
Zürich  
dc.description.fil
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Montero, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.journal.title
Journal of Noncommutative Geometry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.4171/jncg/397  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/jncg/articles/17454