Artículo
Algebraic bivariant K-theory and Leavitt path algebras
Fecha de publicación:
02/02/2021
Editorial:
European Mathematical Society
Revista:
Journal of Noncommutative Geometry
ISSN:
1661-6952
e-ISSN:
1661-6960
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We investigate to what extent homotopy invariant, excisive and matrix stable homology theories help one distinguish between the Leavitt path algebras L.E/ and L.F / of graphs E and F over a commutative ground ring `. We approach this by studying the structure of such algebras under bivariant algebraic K-theory kk, which is the universal homology theory with the properties above. We show that under very mild assumptions on `, for a graph E with finitely many vertices and reduced incidence matrix AE, the structure of L.E/ in kk depends only on the groups Coker.I AE/ and Coker.I A t E/. We also prove that for Leavitt path algebras, kk has several properties similar to those that Kasparov’s bivariant K-theory has for C -graph algebras, including analogues of the Universal coefficient and Künneth theorems of Rosenberg and Schochet
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cortiñas, Guillermo Horacio; Montero, Diego; Algebraic bivariant K-theory and Leavitt path algebras; European Mathematical Society; Journal of Noncommutative Geometry; 25; 1; 2-2-2021; 113-146
Compartir
Altmétricas