Mostrar el registro sencillo del ítem
dc.contributor.author
Carballido, Jessica Andrea
dc.contributor.author
Ponzoni, Ignacio
dc.contributor.author
Cecchini, Rocío Luján
dc.date.available
2022-07-12T19:48:52Z
dc.date.issued
2022-02-18
dc.identifier.citation
Carballido, Jessica Andrea; Ponzoni, Ignacio; Cecchini, Rocío Luján; Filtering non-balanced data using an evolutionary approach; Oxford University Press; Logic Journal of the IGPL (print); 2022; 18-2-2022; 1-15
dc.identifier.issn
1367-0751
dc.identifier.uri
http://hdl.handle.net/11336/161947
dc.description.abstract
Matrices that cannot be handled using conventional clustering, regression or classification methods are often found in every big data research area. In particular, datasets with thousands or millions of rows and less than a hundred columns regularly appear in biological so-called omic problems. The effectiveness of conventional data analysis approaches is hampered by this matrix structure, which necessitates some means of reduction. An evolutionary method called PreCLAS is presented in this article. Its main objective is to find a submatrix with fewer rows that exhibits some group structure. Three stages of experiments were performed. First, a benchmark dataset was used to assess the correct functionality of the method for clustering purposes. Then, a microarray gene expression data matrix was used to analyze the method’s performance in a simple classification scenario, where differential expression was carried out. Finally, several classification methods were compared in terms of classification accuracy using an RNA-seq gene expression dataset. Experiments showed that the new evolutionary technique significantly reduces the number of rows in the matrix and intelligently performs unsupervised row selection, improving classification and clustering methods.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Oxford University Press
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CLUSTERING
dc.subject
GENE EXPRESSION
dc.subject
EVOLUTIONARY COMPUTING
dc.subject
BIOINFORMATICS
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Filtering non-balanced data using an evolutionary approach
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-07-04T19:15:36Z
dc.journal.volume
2022
dc.journal.pagination
1-15
dc.journal.pais
Reino Unido
dc.journal.ciudad
Oxford
dc.description.fil
Fil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Cecchini, Rocío Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.journal.title
Logic Journal of the IGPL (print)
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1093/jigpal/jzac018
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/jigpal/advance-article-abstract/doi/10.1093/jigpal/jzac018/6530593?redirectedFrom=fulltext&login=false
Archivos asociados