Mostrar el registro sencillo del ítem

dc.contributor.author
Carballido, Jessica Andrea  
dc.contributor.author
Ponzoni, Ignacio  
dc.contributor.author
Cecchini, Rocío Luján  
dc.date.available
2022-07-12T19:48:52Z  
dc.date.issued
2022-02-18  
dc.identifier.citation
Carballido, Jessica Andrea; Ponzoni, Ignacio; Cecchini, Rocío Luján; Filtering non-balanced data using an evolutionary approach; Oxford University Press; Logic Journal of the IGPL (print); 2022; 18-2-2022; 1-15  
dc.identifier.issn
1367-0751  
dc.identifier.uri
http://hdl.handle.net/11336/161947  
dc.description.abstract
Matrices that cannot be handled using conventional clustering, regression or classification methods are often found in every big data research area. In particular, datasets with thousands or millions of rows and less than a hundred columns regularly appear in biological so-called omic problems. The effectiveness of conventional data analysis approaches is hampered by this matrix structure, which necessitates some means of reduction. An evolutionary method called PreCLAS is presented in this article. Its main objective is to find a submatrix with fewer rows that exhibits some group structure. Three stages of experiments were performed. First, a benchmark dataset was used to assess the correct functionality of the method for clustering purposes. Then, a microarray gene expression data matrix was used to analyze the method’s performance in a simple classification scenario, where differential expression was carried out. Finally, several classification methods were compared in terms of classification accuracy using an RNA-seq gene expression dataset. Experiments showed that the new evolutionary technique significantly reduces the number of rows in the matrix and intelligently performs unsupervised row selection, improving classification and clustering methods.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CLUSTERING  
dc.subject
GENE EXPRESSION  
dc.subject
EVOLUTIONARY COMPUTING  
dc.subject
BIOINFORMATICS  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Filtering non-balanced data using an evolutionary approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-07-04T19:15:36Z  
dc.journal.volume
2022  
dc.journal.pagination
1-15  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Cecchini, Rocío Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.journal.title
Logic Journal of the IGPL (print)  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1093/jigpal/jzac018  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/jigpal/advance-article-abstract/doi/10.1093/jigpal/jzac018/6530593?redirectedFrom=fulltext&login=false