Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Filtering non-balanced data using an evolutionary approach

Carballido, Jessica AndreaIcon ; Ponzoni, IgnacioIcon ; Cecchini, Rocío LujánIcon
Fecha de publicación: 18/02/2022
Editorial: Oxford University Press
Revista: Logic Journal of the IGPL (print)
ISSN: 1367-0751
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Matrices that cannot be handled using conventional clustering, regression or classification methods are often found in every big data research area. In particular, datasets with thousands or millions of rows and less than a hundred columns regularly appear in biological so-called omic problems. The effectiveness of conventional data analysis approaches is hampered by this matrix structure, which necessitates some means of reduction. An evolutionary method called PreCLAS is presented in this article. Its main objective is to find a submatrix with fewer rows that exhibits some group structure. Three stages of experiments were performed. First, a benchmark dataset was used to assess the correct functionality of the method for clustering purposes. Then, a microarray gene expression data matrix was used to analyze the method’s performance in a simple classification scenario, where differential expression was carried out. Finally, several classification methods were compared in terms of classification accuracy using an RNA-seq gene expression dataset. Experiments showed that the new evolutionary technique significantly reduces the number of rows in the matrix and intelligently performs unsupervised row selection, improving classification and clustering methods.
Palabras clave: CLUSTERING , GENE EXPRESSION , EVOLUTIONARY COMPUTING , BIOINFORMATICS
Ver el registro completo
 
Archivos asociados
Tamaño: 1.397Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/161947
DOI: https://doi.org/10.1093/jigpal/jzac018
URL: https://academic.oup.com/jigpal/advance-article-abstract/doi/10.1093/jigpal/jzac
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Citación
Carballido, Jessica Andrea; Ponzoni, Ignacio; Cecchini, Rocío Luján; Filtering non-balanced data using an evolutionary approach; Oxford University Press; Logic Journal of the IGPL (print); 2022; 18-2-2022; 1-15
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES