Mostrar el registro sencillo del ítem
dc.contributor.author
Tajerian, Matías N.
dc.contributor.author
Pesce, Karina
dc.contributor.author
Frangella, Julia
dc.contributor.author
Quiroga, Ezequiel
dc.contributor.author
Boietti, Bruno Rafael
dc.contributor.author
Chico, Maria José
dc.contributor.author
Swiecicki, María Paz
dc.contributor.author
Benitez, Sonia
dc.contributor.author
Rabellino, Martín
dc.contributor.author
Luna, Daniel Roberto
dc.date.available
2022-07-05T13:58:51Z
dc.date.issued
2021-06
dc.identifier.citation
Tajerian, Matías N.; Pesce, Karina; Frangella, Julia; Quiroga, Ezequiel; Boietti, Bruno Rafael; et al.; Artemisia: Validation of a deep learning model for automatic breast density categorization; AME Publishing Company; Journal of Medical Artificial Intelligence; 4; June; 6-2021; 1-9
dc.identifier.issn
2617-2496
dc.identifier.uri
http://hdl.handle.net/11336/161290
dc.description.abstract
Background: The aim of this study is to validate a deep learning model for the classification of breast density according to American College of Radiology’s breast density patterns. Methods: A convolutional neural network was developed with 10,229 digital screening mammogram images. Once the network was developed and tested, its performance was evaluated before a group of six professionals, the majority report and a commercial software application. We selected randomly 451 new mammographic images from different studies and patients. The categorization process by professionals was repeated in two stages. Results: The agreement between the convolutional neural network and the majority report was k=0.64 (95% CI: 0.58–0.69) in the first stage and k=0.57 (95% CI: 0.52–0.63) in the second stage. The agreement between the CNN and the commercial software application was k=0.54 (95% CI: 0.48–0.60). In both cases, we observed that the concordances of the CNN were within or above the range of professionals’ concordances values. Conclusions: Considering the internal reference standard (majority report) and the external reference standard (commercial software application), we can affirm the CNN achieved professional level performance.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
AME Publishing Company
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
ALGORITHM DEVELOPMENT
dc.subject
ARTIFICIAL INTELLIGENCE
dc.subject
BREAST DENSITY
dc.subject
DEEP LEARNING
dc.subject
MEDICAL IMAGING
dc.subject.classification
Otras Ciencias de la Salud
dc.subject.classification
Ciencias de la Salud
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.title
Artemisia: Validation of a deep learning model for automatic breast density categorization
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-07-04T19:43:47Z
dc.journal.volume
4
dc.journal.number
June
dc.journal.pagination
1-9
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Tajerian, Matías N.. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina
dc.description.fil
Fil: Pesce, Karina. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina
dc.description.fil
Fil: Frangella, Julia. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina
dc.description.fil
Fil: Quiroga, Ezequiel. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina
dc.description.fil
Fil: Boietti, Bruno Rafael. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina
dc.description.fil
Fil: Chico, Maria José. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina
dc.description.fil
Fil: Swiecicki, María Paz. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina
dc.description.fil
Fil: Benitez, Sonia. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina
dc.description.fil
Fil: Rabellino, Martín. Hospital Italiano. Instituto Universitario. Escuela de Medicina; Argentina
dc.description.fil
Fil: Luna, Daniel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional e Ingeniería Biomédica - Hospital Italiano. Instituto de Medicina Traslacional e Ingeniería Biomédica.- Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional e Ingeniería Biomédica; Argentina
dc.journal.title
Journal of Medical Artificial Intelligence
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.21037/jmai-20-43
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://jmai.amegroups.com/article/view/6302/html
Archivos asociados