Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Artemisia: Validation of a deep learning model for automatic breast density categorization

Tajerian, Matías N.; Pesce, Karina; Frangella, Julia; Quiroga, Ezequiel; Boietti, Bruno Rafael; Chico, Maria José; Swiecicki, María Paz; Benitez, Sonia; Rabellino, Martín; Luna, Daniel RobertoIcon
Fecha de publicación: 06/2021
Editorial: AME Publishing Company
Revista: Journal of Medical Artificial Intelligence
ISSN: 2617-2496
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Salud

Resumen

Background: The aim of this study is to validate a deep learning model for the classification of breast density according to American College of Radiology’s breast density patterns. Methods: A convolutional neural network was developed with 10,229 digital screening mammogram images. Once the network was developed and tested, its performance was evaluated before a group of six professionals, the majority report and a commercial software application. We selected randomly 451 new mammographic images from different studies and patients. The categorization process by professionals was repeated in two stages. Results: The agreement between the convolutional neural network and the majority report was k=0.64 (95% CI: 0.58–0.69) in the first stage and k=0.57 (95% CI: 0.52–0.63) in the second stage. The agreement between the CNN and the commercial software application was k=0.54 (95% CI: 0.48–0.60). In both cases, we observed that the concordances of the CNN were within or above the range of professionals’ concordances values. Conclusions: Considering the internal reference standard (majority report) and the external reference standard (commercial software application), we can affirm the CNN achieved professional level performance.
Palabras clave: ALGORITHM DEVELOPMENT , ARTIFICIAL INTELLIGENCE , BREAST DENSITY , DEEP LEARNING , MEDICAL IMAGING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.409Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/161290
DOI: http://dx.doi.org/10.21037/jmai-20-43
URL: https://jmai.amegroups.com/article/view/6302/html
Colecciones
Articulos (IMTIB)
Articulos de INSTITUTO DE MEDICINA TRASLACIONAL E INGENIERIA BIOMEDICA
Citación
Tajerian, Matías N.; Pesce, Karina; Frangella, Julia; Quiroga, Ezequiel; Boietti, Bruno Rafael; et al.; Artemisia: Validation of a deep learning model for automatic breast density categorization; AME Publishing Company; Journal of Medical Artificial Intelligence; 4; June; 6-2021; 1-9
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES