Mostrar el registro sencillo del ítem
dc.contributor.author
Dimant, Veronica Isabel
dc.contributor.author
Lassalle, Silvia Beatriz
dc.date.available
2022-06-30T10:14:26Z
dc.date.issued
2012-12
dc.identifier.citation
Dimant, Veronica Isabel; Lassalle, Silvia Beatriz; M-structures in vector-valued polynomial spaces; Heldermann Verlag; Journal Of Convex Analysis; 19; 3; 12-2012; 685-711
dc.identifier.issn
0944-6532
dc.identifier.uri
http://hdl.handle.net/11336/160871
dc.description.abstract
This paper is concerned with the study of M-structures in spaces of polynomials. More precisely, we discuss for E and F Banach spaces, whether the class of weakly continuous on bounded sets n-homogeneous polynomials, Pw(nE; F), is an M-ideal in the space of continuous n-homogeneous polynomials P(nE; F). We show that there is some hope for this to happen only for a finite range of values of n. We establish sufficient conditions under which the problem has positive and negative answers and use the obtained results to study the particular cases when E = lp and F = lq or F is a Lorentz sequence space d(w; q). We extend to our setting the notion of property (M) introduced by Kalton which allows us to lift M-structures from the linear to the vector-valued polynomial context. Also, when Pw(nE; F) is an M-ideal in P(nE; F) we prove a Bishop-Phelps type result for vector-valued polynomials and relate norm-attaining polynomials with farthest points and remotal sets.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Heldermann Verlag
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
M-ideals
dc.subject
homogeneous polynomials
dc.subject
weakly continuous on bounded sets polynomials
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
M-structures in vector-valued polynomial spaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-05-04T17:17:49Z
dc.identifier.eissn
2363-6394
dc.journal.volume
19
dc.journal.number
3
dc.journal.pagination
685-711
dc.journal.pais
Alemania
dc.journal.ciudad
Lemgo
dc.description.fil
Fil: Dimant, Veronica Isabel. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.journal.title
Journal Of Convex Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.heldermann.de/JCA/JCA19/JCA193/jca19037.htm
Archivos asociados