Artículo
M-structures in vector-valued polynomial spaces
Fecha de publicación:
12/2012
Editorial:
Heldermann Verlag
Revista:
Journal Of Convex Analysis
ISSN:
0944-6532
e-ISSN:
2363-6394
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper is concerned with the study of M-structures in spaces of polynomials. More precisely, we discuss for E and F Banach spaces, whether the class of weakly continuous on bounded sets n-homogeneous polynomials, Pw(nE; F), is an M-ideal in the space of continuous n-homogeneous polynomials P(nE; F). We show that there is some hope for this to happen only for a finite range of values of n. We establish sufficient conditions under which the problem has positive and negative answers and use the obtained results to study the particular cases when E = lp and F = lq or F is a Lorentz sequence space d(w; q). We extend to our setting the notion of property (M) introduced by Kalton which allows us to lift M-structures from the linear to the vector-valued polynomial context. Also, when Pw(nE; F) is an M-ideal in P(nE; F) we prove a Bishop-Phelps type result for vector-valued polynomials and relate norm-attaining polynomials with farthest points and remotal sets.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Dimant, Veronica Isabel; Lassalle, Silvia Beatriz; M-structures in vector-valued polynomial spaces; Heldermann Verlag; Journal Of Convex Analysis; 19; 3; 12-2012; 685-711
Compartir