Mostrar el registro sencillo del ítem

dc.contributor.author
Perrucci, Daniel Roberto  
dc.contributor.author
Roy, Marie Françoise  
dc.date.available
2022-06-30T04:21:37Z  
dc.date.issued
2019-09  
dc.identifier.citation
Perrucci, Daniel Roberto; Roy, Marie Françoise; Quantitative Fundamental Theorem of Algebra; Oxford University Press; Quarterly Journal Of Mathematics; 70; 3; 9-2019; 1009-1037  
dc.identifier.issn
0033-5606  
dc.identifier.uri
http://hdl.handle.net/11336/160860  
dc.description.abstract
Using subresultants, we modify a real-algebraic proof due to Eisermann of the Fundamental Theorem of Algebra ([FTA]) to obtain the following quantitative information: in order to prove the [FTA] for polynomials of degree d, the Intermediate Value Theorem ([IVT]) is required to hold onlyfor real polynomials of degree at most d^2 . We also explain that the classical proof due to Laplace requires [IVT] for real polynomials of exponential degree. These quantitative results highlight thedifference in nature of these two proofs.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Fundamental Theorem of Algebra  
dc.subject
Subresultants  
dc.subject
Cauchy Index  
dc.subject
Winding Number  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Quantitative Fundamental Theorem of Algebra  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-04-28T14:20:41Z  
dc.identifier.eissn
1464-3847  
dc.journal.volume
70  
dc.journal.number
3  
dc.journal.pagination
1009-1037  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Perrucci, Daniel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Roy, Marie Françoise. Universite de Rennes I. Institut de Recherche Mathematique de Rennes; Francia  
dc.journal.title
Quarterly Journal Of Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1093/qmath/haz008  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/qjmath/article-abstract/70/3/1009/5489536?redirectedFrom=fulltext