Artículo
Quantitative Fundamental Theorem of Algebra
Fecha de publicación:
09/2019
Editorial:
Oxford University Press
Revista:
Quarterly Journal Of Mathematics
ISSN:
0033-5606
e-ISSN:
1464-3847
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Using subresultants, we modify a real-algebraic proof due to Eisermann of the Fundamental Theorem of Algebra ([FTA]) to obtain the following quantitative information: in order to prove the [FTA] for polynomials of degree d, the Intermediate Value Theorem ([IVT]) is required to hold onlyfor real polynomials of degree at most d^2 . We also explain that the classical proof due to Laplace requires [IVT] for real polynomials of exponential degree. These quantitative results highlight thedifference in nature of these two proofs.
Palabras clave:
Fundamental Theorem of Algebra
,
Subresultants
,
Cauchy Index
,
Winding Number
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Perrucci, Daniel Roberto; Roy, Marie Françoise; Quantitative Fundamental Theorem of Algebra; Oxford University Press; Quarterly Journal Of Mathematics; 70; 3; 9-2019; 1009-1037
Compartir
Altmétricas