Mostrar el registro sencillo del ítem
dc.contributor.author
O'brien, Ronald Julián
dc.contributor.author
Fontana, Juan Manuel
dc.contributor.author
Ponso, Nicolás
dc.contributor.author
Molisani Yolitti, Leonardo
dc.date.available
2022-06-22T14:30:59Z
dc.date.issued
2016-12
dc.identifier.citation
O'brien, Ronald Julián; Fontana, Juan Manuel; Ponso, Nicolás; Molisani Yolitti, Leonardo; A pattern recognition system based on acoustic signals for fault detection on composite materials; Gauthier-Villars/Editions Elsevier; European Journal Of Mechanics A-solids; 64; 12-2016; 1-10
dc.identifier.issn
0997-7538
dc.identifier.uri
http://hdl.handle.net/11336/160187
dc.description.abstract
The use of composite materials in industry applications is constantly growing. However, fault detection and prediction on these materials is not as simple as in traditional materials. Thus, the development of a methodology for fault detection is strictly necessary to ensure the integrity of a structure. This paper proposes a pattern recognition system that implements an Artificial Neural Network classifier to detect and classify damage on composite beams. Classifiers were trained and tested using acoustic signals emitted by healthy and damaged beams after an impulsive load was applied to them. Singular Value Decomposition was used to filter the acoustic signals whereas Principal Component Analysis was implemented to extract relevant information from the filtered signal. The extracted information was used as inputs to the classifier that was able to predict four different levels of damage on glass fiber and carbon fiber beams with more than 97% accuracy. These results suggest that the proposed methodology can be further investigated to develop a robust system for automatic detection of damage on composite structures.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Gauthier-Villars/Editions Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ARTIFICIAL NEURAL NETWORK
dc.subject
COMPOSITE MATERIAL
dc.subject
MACHINE LEARNING
dc.subject
NON-DESTRUCTIVE TESTING
dc.subject
SOUND PRESSURE LEVEL
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A pattern recognition system based on acoustic signals for fault detection on composite materials
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-06-21T18:33:35Z
dc.journal.volume
64
dc.journal.pagination
1-10
dc.journal.pais
Francia
dc.journal.ciudad
Paris
dc.description.fil
Fil: O'brien, Ronald Julián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Mecánica. Grupo de Acústica y Vibraciones; Argentina
dc.description.fil
Fil: Fontana, Juan Manuel. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Mecánica; Argentina. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; Argentina
dc.description.fil
Fil: Ponso, Nicolás. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Mecánica. Grupo de Acústica y Vibraciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Molisani Yolitti, Leonardo. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Mecánica; Argentina
dc.journal.title
European Journal Of Mechanics A-solids
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0997753817300487
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.euromechsol.2017.01.007
Archivos asociados