Mostrar el registro sencillo del ítem

dc.contributor.author
O'brien, Ronald Julián  
dc.contributor.author
Fontana, Juan Manuel  
dc.contributor.author
Ponso, Nicolás  
dc.contributor.author
Molisani Yolitti, Leonardo  
dc.date.available
2022-06-22T14:30:59Z  
dc.date.issued
2016-12  
dc.identifier.citation
O'brien, Ronald Julián; Fontana, Juan Manuel; Ponso, Nicolás; Molisani Yolitti, Leonardo; A pattern recognition system based on acoustic signals for fault detection on composite materials; Gauthier-Villars/Editions Elsevier; European Journal Of Mechanics A-solids; 64; 12-2016; 1-10  
dc.identifier.issn
0997-7538  
dc.identifier.uri
http://hdl.handle.net/11336/160187  
dc.description.abstract
The use of composite materials in industry applications is constantly growing. However, fault detection and prediction on these materials is not as simple as in traditional materials. Thus, the development of a methodology for fault detection is strictly necessary to ensure the integrity of a structure. This paper proposes a pattern recognition system that implements an Artificial Neural Network classifier to detect and classify damage on composite beams. Classifiers were trained and tested using acoustic signals emitted by healthy and damaged beams after an impulsive load was applied to them. Singular Value Decomposition was used to filter the acoustic signals whereas Principal Component Analysis was implemented to extract relevant information from the filtered signal. The extracted information was used as inputs to the classifier that was able to predict four different levels of damage on glass fiber and carbon fiber beams with more than 97% accuracy. These results suggest that the proposed methodology can be further investigated to develop a robust system for automatic detection of damage on composite structures.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Gauthier-Villars/Editions Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARTIFICIAL NEURAL NETWORK  
dc.subject
COMPOSITE MATERIAL  
dc.subject
MACHINE LEARNING  
dc.subject
NON-DESTRUCTIVE TESTING  
dc.subject
SOUND PRESSURE LEVEL  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A pattern recognition system based on acoustic signals for fault detection on composite materials  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-06-21T18:33:35Z  
dc.journal.volume
64  
dc.journal.pagination
1-10  
dc.journal.pais
Francia  
dc.journal.ciudad
Paris  
dc.description.fil
Fil: O'brien, Ronald Julián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Mecánica. Grupo de Acústica y Vibraciones; Argentina  
dc.description.fil
Fil: Fontana, Juan Manuel. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Mecánica; Argentina. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; Argentina  
dc.description.fil
Fil: Ponso, Nicolás. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Mecánica. Grupo de Acústica y Vibraciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Molisani Yolitti, Leonardo. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Mecánica; Argentina  
dc.journal.title
European Journal Of Mechanics A-solids  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0997753817300487  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.euromechsol.2017.01.007