Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A pattern recognition system based on acoustic signals for fault detection on composite materials

O'brien, Ronald JuliánIcon ; Fontana, Juan ManuelIcon ; Ponso, NicolásIcon ; Molisani Yolitti, Leonardo
Fecha de publicación: 12/2016
Editorial: Gauthier-Villars/Editions Elsevier
Revista: European Journal Of Mechanics A-solids
ISSN: 0997-7538
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Mecánica

Resumen

The use of composite materials in industry applications is constantly growing. However, fault detection and prediction on these materials is not as simple as in traditional materials. Thus, the development of a methodology for fault detection is strictly necessary to ensure the integrity of a structure. This paper proposes a pattern recognition system that implements an Artificial Neural Network classifier to detect and classify damage on composite beams. Classifiers were trained and tested using acoustic signals emitted by healthy and damaged beams after an impulsive load was applied to them. Singular Value Decomposition was used to filter the acoustic signals whereas Principal Component Analysis was implemented to extract relevant information from the filtered signal. The extracted information was used as inputs to the classifier that was able to predict four different levels of damage on glass fiber and carbon fiber beams with more than 97% accuracy. These results suggest that the proposed methodology can be further investigated to develop a robust system for automatic detection of damage on composite structures.
Palabras clave: ARTIFICIAL NEURAL NETWORK , COMPOSITE MATERIAL , MACHINE LEARNING , NON-DESTRUCTIVE TESTING , SOUND PRESSURE LEVEL
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.228Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/160187
URL: http://www.sciencedirect.com/science/article/pii/S0997753817300487
DOI: http://dx.doi.org/10.1016/j.euromechsol.2017.01.007
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
O'brien, Ronald Julián; Fontana, Juan Manuel; Ponso, Nicolás; Molisani Yolitti, Leonardo; A pattern recognition system based on acoustic signals for fault detection on composite materials; Gauthier-Villars/Editions Elsevier; European Journal Of Mechanics A-solids; 64; 12-2016; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES