Mostrar el registro sencillo del ítem
dc.contributor.author
Wedemann, Roseli S.
dc.contributor.author
Plastino, Ángel Ricardo
dc.contributor.other
Tetko, Igor V.
dc.contributor.other
Kůrková, Věra
dc.contributor.other
Karpov, Pavel
dc.contributor.other
Theis, Fabian
dc.date.available
2022-06-22T11:30:04Z
dc.date.issued
2019
dc.identifier.citation
A nonlinear Fokker-Planck description of continuous neural network dynamics; 28th International Conference on Artificial Neural Networks; Munich; Alemania; 2019; 43-56
dc.identifier.isbn
978-3-030-30487-4
dc.identifier.issn
0302-9743
dc.identifier.uri
http://hdl.handle.net/11336/160148
dc.description.abstract
The nonextensive thermostatistical formalism has been increasingly applied to the description of many complex systems in physics, biology, psychology, economics, and other fields. The q-Maximum Entropy (q-MaxEnt) distributions, which optimize the Sq, power-law entropic functionals, are central to this formalism. We have done previous work regarding computational neural models of associative memory functioning, for mental phenomena such as neurosis, creativity, and the interplay between consciousness and unconsciousness, which suggest that q-MaxEnt distributions may be relevant for the development of neural models for these processes. Power-law behavior has also been experimentally observed in brain functioning. We propose here a nonlinear Fokker-Planck model, associated with the continuous-time evolution equations for interconnected neurons of the Hopfield model. The equation which characterizes the model has stationary solutions of the q-MaxEnt type and is associated with a free energy like quantity that decreases during the time-evolution of the system. This framework elucidates a possible dynamical mechanism which can generate q-MaxEnt distributions in Hopfield memory neural networks. It also provides a theoretical framework that supports the choice of different entropic measures for modelling and simulating complex networks such as the brain, as well as other artificial neural networks.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.source
https://www.springer.com/series/558
dc.subject
CONTINUOUS NEURAL NETWORKS
dc.subject
FOKKER-PLANCK DYNAMICS
dc.subject
NONEXTENSIVE THERMOSTATISTICS
dc.subject
ASSOCIATIVE MEMORY
dc.subject
ATTRACTORS
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Otras Ciencias Naturales y Exactas
dc.subject.classification
Otras Ciencias Naturales y Exactas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A nonlinear Fokker-Planck description of continuous neural network dynamics
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2022-06-21T18:14:03Z
dc.identifier.eissn
1611-3349
dc.journal.pagination
43-56
dc.journal.pais
Suiza
dc.journal.ciudad
Cham
dc.description.fil
Fil: Wedemann, Roseli S.. Universidade do Estado de Rio do Janeiro; Brasil
dc.description.fil
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-030-30487-4_4
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/978-3-030-30487-4_4
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Conferencia
dc.description.nombreEvento
28th International Conference on Artificial Neural Networks
dc.date.evento
2019-09-17
dc.description.ciudadEvento
Munich
dc.description.paisEvento
Alemania
dc.type.publicacion
Book
dc.description.institucionOrganizadora
European Neural Network Society
dc.source.libro
Artificial Neural Networks and Machine Learning-International Conference on Artificial Neural Networks: Theoretical Neural Computation
dc.date.eventoHasta
2019-09-19
dc.type
Conferencia
Archivos asociados