Mostrar el registro sencillo del ítem

dc.contributor.author
Wedemann, Roseli S.  
dc.contributor.author
Plastino, Ángel Ricardo  
dc.contributor.other
Tetko, Igor V.  
dc.contributor.other
Kůrková, Věra  
dc.contributor.other
Karpov, Pavel  
dc.contributor.other
Theis, Fabian  
dc.date.available
2022-06-22T11:30:04Z  
dc.date.issued
2019  
dc.identifier.citation
A nonlinear Fokker-Planck description of continuous neural network dynamics; 28th International Conference on Artificial Neural Networks; Munich; Alemania; 2019; 43-56  
dc.identifier.isbn
978-3-030-30487-4  
dc.identifier.issn
0302-9743  
dc.identifier.uri
http://hdl.handle.net/11336/160148  
dc.description.abstract
The nonextensive thermostatistical formalism has been increasingly applied to the description of many complex systems in physics, biology, psychology, economics, and other fields. The q-Maximum Entropy (q-MaxEnt) distributions, which optimize the Sq, power-law entropic functionals, are central to this formalism. We have done previous work regarding computational neural models of associative memory functioning, for mental phenomena such as neurosis, creativity, and the interplay between consciousness and unconsciousness, which suggest that q-MaxEnt distributions may be relevant for the development of neural models for these processes. Power-law behavior has also been experimentally observed in brain functioning. We propose here a nonlinear Fokker-Planck model, associated with the continuous-time evolution equations for interconnected neurons of the Hopfield model. The equation which characterizes the model has stationary solutions of the q-MaxEnt type and is associated with a free energy like quantity that decreases during the time-evolution of the system. This framework elucidates a possible dynamical mechanism which can generate q-MaxEnt distributions in Hopfield memory neural networks. It also provides a theoretical framework that supports the choice of different entropic measures for modelling and simulating complex networks such as the brain, as well as other artificial neural networks.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.source
https://www.springer.com/series/558  
dc.subject
CONTINUOUS NEURAL NETWORKS  
dc.subject
FOKKER-PLANCK DYNAMICS  
dc.subject
NONEXTENSIVE THERMOSTATISTICS  
dc.subject
ASSOCIATIVE MEMORY  
dc.subject
ATTRACTORS  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A nonlinear Fokker-Planck description of continuous neural network dynamics  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2022-06-21T18:14:03Z  
dc.identifier.eissn
1611-3349  
dc.journal.pagination
43-56  
dc.journal.pais
Suiza  
dc.journal.ciudad
Cham  
dc.description.fil
Fil: Wedemann, Roseli S.. Universidade do Estado de Rio do Janeiro; Brasil  
dc.description.fil
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-030-30487-4_4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/978-3-030-30487-4_4  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Conferencia  
dc.description.nombreEvento
28th International Conference on Artificial Neural Networks  
dc.date.evento
2019-09-17  
dc.description.ciudadEvento
Munich  
dc.description.paisEvento
Alemania  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
European Neural Network Society  
dc.source.libro
Artificial Neural Networks and Machine Learning-International Conference on Artificial Neural Networks: Theoretical Neural Computation  
dc.date.eventoHasta
2019-09-19  
dc.type
Conferencia