Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

A nonlinear Fokker-Planck description of continuous neural network dynamics

Wedemann, Roseli S.; Plastino, Ángel RicardoIcon
Colaboradores: Tetko, Igor V.; Kůrková, Věra; Karpov, Pavel; Theis, Fabian
Tipo del evento: Conferencia
Nombre del evento: 28th International Conference on Artificial Neural Networks
Fecha del evento: 17/09/2019
Institución Organizadora: European Neural Network Society;
Título del Libro: Artificial Neural Networks and Machine Learning-International Conference on Artificial Neural Networks: Theoretical Neural Computation
Editorial: Springer
ISSN: 0302-9743
e-ISSN: 1611-3349
ISBN: 978-3-030-30487-4
Idioma: Inglés
Clasificación temática:
Otras Ciencias Físicas; Otras Ciencias Naturales y Exactas

Resumen

The nonextensive thermostatistical formalism has been increasingly applied to the description of many complex systems in physics, biology, psychology, economics, and other fields. The q-Maximum Entropy (q-MaxEnt) distributions, which optimize the Sq, power-law entropic functionals, are central to this formalism. We have done previous work regarding computational neural models of associative memory functioning, for mental phenomena such as neurosis, creativity, and the interplay between consciousness and unconsciousness, which suggest that q-MaxEnt distributions may be relevant for the development of neural models for these processes. Power-law behavior has also been experimentally observed in brain functioning. We propose here a nonlinear Fokker-Planck model, associated with the continuous-time evolution equations for interconnected neurons of the Hopfield model. The equation which characterizes the model has stationary solutions of the q-MaxEnt type and is associated with a free energy like quantity that decreases during the time-evolution of the system. This framework elucidates a possible dynamical mechanism which can generate q-MaxEnt distributions in Hopfield memory neural networks. It also provides a theoretical framework that supports the choice of different entropic measures for modelling and simulating complex networks such as the brain, as well as other artificial neural networks.
Palabras clave: CONTINUOUS NEURAL NETWORKS , FOKKER-PLANCK DYNAMICS , NONEXTENSIVE THERMOSTATISTICS , ASSOCIATIVE MEMORY , ATTRACTORS
Ver el registro completo
 
Archivos asociados
Tamaño: 353.5Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/160148
URL: https://link.springer.com/chapter/10.1007%2F978-3-030-30487-4_4
DOI: https://doi.org/10.1007/978-3-030-30487-4_4
Colecciones
Eventos(SEDE CENTRAL)
Eventos de SEDE CENTRAL
Citación
A nonlinear Fokker-Planck description of continuous neural network dynamics; 28th International Conference on Artificial Neural Networks; Munich; Alemania; 2019; 43-56
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES