Mostrar el registro sencillo del ítem

dc.contributor.author
Descotte, María Emilia  
dc.contributor.author
Dubuc, Eduardo Julio  
dc.contributor.author
Szyld, Martín  
dc.date.available
2022-06-16T18:20:20Z  
dc.date.issued
2018-07  
dc.identifier.citation
Descotte, María Emilia; Dubuc, Eduardo Julio; Szyld, Martín; Sigma limits in 2-categories and flat pseudofunctors; Academic Press Inc Elsevier Science; Advances in Mathematics; 333; 7-2018; 266-313  
dc.identifier.issn
0001-8708  
dc.identifier.uri
http://hdl.handle.net/11336/159999  
dc.description.abstract
In this paper we introduce sigma limits (which we write σ-limits), a concept that interpolates between lax and pseudolimits: for a fixed family Σ of arrows of a 2-category A, a σ-cone for a 2-functor A⟶FB is a lax cone such that the structural 2-cells corresponding to the arrows of Σ are invertible. The conical σ-limit of F is the universal σ-cone. Similarly we define σ-natural transformations and weighted σ-limits. We consider also the case of bilimits. We develop the theory of σ-limits and σ-bilimits, whose importance relies on the following key fact: any weighted σ-limit (or σ-bilimit) can be expressed as a conical one. From this we obtain, in particular, a canonical expression of an arbitrary Cat-valued 2-functor as a conical σ-bicolimit of representable 2-functors, for a suitable choice of Σ, which is equivalent to the well known bicoend formula. As an application, we establish the 2-dimensional theory of flat pseudofunctors. We define a Cat-valued pseudofunctor to be flat when its left bi-Kan extension along the Yoneda 2-functor preserves finite weighted bilimits. We introduce a notion of 2-filteredness of a 2-category with respect to a class Σ, which we call σ-filtered. Our main result is: A pseudofunctor A⟶Cat is flat if and only if it is a σ-filtered σ-bicolimit of representable 2-functors. In particular the reader will notice the relevance of this result for the development of a theory of 2-topoi.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
2-CATEGORIES  
dc.subject
CONICAL LIMIT  
dc.subject
FLAT  
dc.subject
PSEUDOFUNCTOR  
dc.subject
SIGMA FILTERED  
dc.subject
SIGMA LIMITS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Sigma limits in 2-categories and flat pseudofunctors  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-04-28T14:21:11Z  
dc.journal.volume
333  
dc.journal.pagination
266-313  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Descotte, María Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Dubuc, Eduardo Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Szyld, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Advances in Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870818301968  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aim.2018.05.021