Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Sigma limits in 2-categories and flat pseudofunctors

Descotte, María EmiliaIcon ; Dubuc, Eduardo JulioIcon ; Szyld, MartínIcon
Fecha de publicación: 07/2018
Editorial: Academic Press Inc Elsevier Science
Revista: Advances in Mathematics
ISSN: 0001-8708
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

In this paper we introduce sigma limits (which we write σ-limits), a concept that interpolates between lax and pseudolimits: for a fixed family Σ of arrows of a 2-category A, a σ-cone for a 2-functor A⟶FB is a lax cone such that the structural 2-cells corresponding to the arrows of Σ are invertible. The conical σ-limit of F is the universal σ-cone. Similarly we define σ-natural transformations and weighted σ-limits. We consider also the case of bilimits. We develop the theory of σ-limits and σ-bilimits, whose importance relies on the following key fact: any weighted σ-limit (or σ-bilimit) can be expressed as a conical one. From this we obtain, in particular, a canonical expression of an arbitrary Cat-valued 2-functor as a conical σ-bicolimit of representable 2-functors, for a suitable choice of Σ, which is equivalent to the well known bicoend formula. As an application, we establish the 2-dimensional theory of flat pseudofunctors. We define a Cat-valued pseudofunctor to be flat when its left bi-Kan extension along the Yoneda 2-functor preserves finite weighted bilimits. We introduce a notion of 2-filteredness of a 2-category with respect to a class Σ, which we call σ-filtered. Our main result is: A pseudofunctor A⟶Cat is flat if and only if it is a σ-filtered σ-bicolimit of representable 2-functors. In particular the reader will notice the relevance of this result for the development of a theory of 2-topoi.
Palabras clave: 2-CATEGORIES , CONICAL LIMIT , FLAT , PSEUDOFUNCTOR , SIGMA FILTERED , SIGMA LIMITS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 778.1Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/159999
URL: https://www.sciencedirect.com/science/article/pii/S0001870818301968
DOI: http://dx.doi.org/10.1016/j.aim.2018.05.021
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Descotte, María Emilia; Dubuc, Eduardo Julio; Szyld, Martín; Sigma limits in 2-categories and flat pseudofunctors; Academic Press Inc Elsevier Science; Advances in Mathematics; 333; 7-2018; 266-313
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES