Mostrar el registro sencillo del ítem

dc.contributor.author
Tewari, Shrankhala  
dc.contributor.author
Toledo Margalef, Pablo Adrian  
dc.contributor.author
Kareem, Ayesha  
dc.contributor.author
Abdul Hussein, Ayah  
dc.contributor.author
White, Marina  
dc.contributor.author
Wazana, Ashley  
dc.contributor.author
Davidge, Sandra T.  
dc.contributor.author
Delrieux, Claudio Augusto  
dc.contributor.author
Connor, Kristin L.  
dc.date.available
2022-06-16T14:12:20Z  
dc.date.issued
2021-10-22  
dc.identifier.citation
Tewari, Shrankhala; Toledo Margalef, Pablo Adrian; Kareem, Ayesha; Abdul Hussein, Ayah; White, Marina; et al.; Mining Early Life Risk and Resiliency Factors and Their Influences in Human Populations from PubMed: A Machine Learning Approach to Discover DOHaD Evidence; Multidisciplinary Digital Publishing Institute; Journal of Personalized Medicine; 11; 11; 22-10-2021; 1-13  
dc.identifier.uri
http://hdl.handle.net/11336/159933  
dc.description.abstract
The Developmental Origins of Health and Disease (DOHaD) framework aims to understand how early life exposures shape lifecycle health. To date, no comprehensive list of these exposures and their interactions has been developed, which limits our ability to predict trajectories of risk and resiliency in humans. To address this gap, we developed a model that uses text-mining, machine learning, and natural language processing approaches to automate search, data extraction, and content analysis from DOHaD-related research articles available in PubMed. Our first model captured 2469 articles, which were subsequently categorised into topics based on word frequencies within the titles and abstracts. A manual screening validated 848 of these as relevant, which were used to develop a revised model that finally captured 2098 articles that largely fell under the most prominently researched domains related to our specific DOHaD focus. The articles were clustered according to latent topic extraction, and 23 experts in the field independently labelled the perceived topics. Consensus analysis on this labelling yielded mostly from fair to substantial agreement, which demonstrates that automated models can be developed to successfully retrieve and classify research literature, as a first step to gather evidence related to DOHaD risk and resilience factors that influence later life human health.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Multidisciplinary Digital Publishing Institute  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MACHINE LEARNING  
dc.subject
TEXT MINING  
dc.subject
DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Mining Early Life Risk and Resiliency Factors and Their Influences in Human Populations from PubMed: A Machine Learning Approach to Discover DOHaD Evidence  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-05-17T12:52:22Z  
dc.identifier.eissn
2075-4426  
dc.journal.volume
11  
dc.journal.number
11  
dc.journal.pagination
1-13  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basilea  
dc.description.fil
Fil: Tewari, Shrankhala. Carleton University; Canadá  
dc.description.fil
Fil: Toledo Margalef, Pablo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina  
dc.description.fil
Fil: Kareem, Ayesha. Carleton University; Canadá  
dc.description.fil
Fil: Abdul Hussein, Ayah. Carleton University; Canadá  
dc.description.fil
Fil: White, Marina. Carleton University; Canadá  
dc.description.fil
Fil: Wazana, Ashley. McGill University; Canadá  
dc.description.fil
Fil: Davidge, Sandra T.. University of Alberta; Canadá  
dc.description.fil
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina  
dc.description.fil
Fil: Connor, Kristin L.. Carleton University; Canadá  
dc.journal.title
Journal of Personalized Medicine  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-4426/11/11/1064  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/jpm11111064