Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Mining Early Life Risk and Resiliency Factors and Their Influences in Human Populations from PubMed: A Machine Learning Approach to Discover DOHaD Evidence

Tewari, Shrankhala; Toledo Margalef, Pablo AdrianIcon ; Kareem, Ayesha; Abdul Hussein, Ayah; White, Marina; Wazana, Ashley; Davidge, Sandra T.; Delrieux, Claudio AugustoIcon ; Connor, Kristin L.
Fecha de publicación: 22/10/2021
Editorial: Multidisciplinary Digital Publishing Institute
Revista: Journal of Personalized Medicine
e-ISSN: 2075-4426
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

The Developmental Origins of Health and Disease (DOHaD) framework aims to understand how early life exposures shape lifecycle health. To date, no comprehensive list of these exposures and their interactions has been developed, which limits our ability to predict trajectories of risk and resiliency in humans. To address this gap, we developed a model that uses text-mining, machine learning, and natural language processing approaches to automate search, data extraction, and content analysis from DOHaD-related research articles available in PubMed. Our first model captured 2469 articles, which were subsequently categorised into topics based on word frequencies within the titles and abstracts. A manual screening validated 848 of these as relevant, which were used to develop a revised model that finally captured 2098 articles that largely fell under the most prominently researched domains related to our specific DOHaD focus. The articles were clustered according to latent topic extraction, and 23 experts in the field independently labelled the perceived topics. Consensus analysis on this labelling yielded mostly from fair to substantial agreement, which demonstrates that automated models can be developed to successfully retrieve and classify research literature, as a first step to gather evidence related to DOHaD risk and resilience factors that influence later life human health.
Palabras clave: MACHINE LEARNING , TEXT MINING , DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.930Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/159933
URL: https://www.mdpi.com/2075-4426/11/11/1064
DOI: http://dx.doi.org/10.3390/jpm11111064
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Tewari, Shrankhala; Toledo Margalef, Pablo Adrian; Kareem, Ayesha; Abdul Hussein, Ayah; White, Marina; et al.; Mining Early Life Risk and Resiliency Factors and Their Influences in Human Populations from PubMed: A Machine Learning Approach to Discover DOHaD Evidence; Multidisciplinary Digital Publishing Institute; Journal of Personalized Medicine; 11; 11; 22-10-2021; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES