Mostrar el registro sencillo del ítem

dc.contributor.author
Lind, John C.  
dc.contributor.author
Wiens, Douglas P.  
dc.contributor.author
Yohai, Victor Jaime  
dc.date.available
2017-05-03T19:58:15Z  
dc.date.issued
2013-09  
dc.identifier.citation
Lind, John C.; Wiens, Douglas P.; Yohai, Victor Jaime; Robust minimum information loss estimation; Elsevier Science; Computational Statistics And Data Analysis; 65; 9-2013; 98-112  
dc.identifier.issn
0167-9473  
dc.identifier.uri
http://hdl.handle.net/11336/15932  
dc.description.abstract
Two robust estimators of a matrix-valued location parameter are introduced and discussed. Each is the average of the members of a subsample–typically of covariance or cross-spectrum matrices–with the subsample chosen to minimize a function of its average. In one case this function is the Kullback–Leibler discrimination information loss incurred when the subsample is summarized by its average; in the other it is the determinant, subject to a certain side condition. For each, the authors give an efficient computing algorithm, and show that the estimator has, asymptotically, the maximum possible breakdown point. The main motivation is the need for efficient and robust estimation of cross-spectrum matrices, and they present a case study in which the data points originate as multichannel electroencephalogram recordings but are then summarized by the corresponding sample cross-spectrum matrices.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Breakdown  
dc.subject
Covariance Cross-Spectrum Matrix  
dc.subject
Electroencephalogram Recording  
dc.subject
Minimum Covariance Determinant  
dc.subject
Trimmed Minimum Information Loss Estimate  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Robust minimum information loss estimation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-05-02T20:59:05Z  
dc.journal.volume
65  
dc.journal.pagination
98-112  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Lind, John C.. Alberta Hospital Edmonton; Canadá  
dc.description.fil
Fil: Wiens, Douglas P.. University of Alberta; Canadá  
dc.description.fil
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Computational Statistics And Data Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.csda.2012.06.011  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167947312002526