Mostrar el registro sencillo del ítem
dc.contributor.author
Lind, John C.
dc.contributor.author
Wiens, Douglas P.
dc.contributor.author
Yohai, Victor Jaime
dc.date.available
2017-05-03T19:58:15Z
dc.date.issued
2013-09
dc.identifier.citation
Lind, John C.; Wiens, Douglas P.; Yohai, Victor Jaime; Robust minimum information loss estimation; Elsevier Science; Computational Statistics And Data Analysis; 65; 9-2013; 98-112
dc.identifier.issn
0167-9473
dc.identifier.uri
http://hdl.handle.net/11336/15932
dc.description.abstract
Two robust estimators of a matrix-valued location parameter are introduced and discussed. Each is the average of the members of a subsample–typically of covariance or cross-spectrum matrices–with the subsample chosen to minimize a function of its average. In one case this function is the Kullback–Leibler discrimination information loss incurred when the subsample is summarized by its average; in the other it is the determinant, subject to a certain side condition. For each, the authors give an efficient computing algorithm, and show that the estimator has, asymptotically, the maximum possible breakdown point. The main motivation is the need for efficient and robust estimation of cross-spectrum matrices, and they present a case study in which the data points originate as multichannel electroencephalogram recordings but are then summarized by the corresponding sample cross-spectrum matrices.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Breakdown
dc.subject
Covariance Cross-Spectrum Matrix
dc.subject
Electroencephalogram Recording
dc.subject
Minimum Covariance Determinant
dc.subject
Trimmed Minimum Information Loss Estimate
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Robust minimum information loss estimation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-05-02T20:59:05Z
dc.journal.volume
65
dc.journal.pagination
98-112
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Lind, John C.. Alberta Hospital Edmonton; Canadá
dc.description.fil
Fil: Wiens, Douglas P.. University of Alberta; Canadá
dc.description.fil
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Computational Statistics And Data Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.csda.2012.06.011
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167947312002526
Archivos asociados