Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Robust minimum information loss estimation

Lind, John C.; Wiens, Douglas P.; Yohai, Victor JaimeIcon
Fecha de publicación: 09/2013
Editorial: Elsevier Science
Revista: Computational Statistics And Data Analysis
ISSN: 0167-9473
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Estadística y Probabilidad

Resumen

Two robust estimators of a matrix-valued location parameter are introduced and discussed. Each is the average of the members of a subsample–typically of covariance or cross-spectrum matrices–with the subsample chosen to minimize a function of its average. In one case this function is the Kullback–Leibler discrimination information loss incurred when the subsample is summarized by its average; in the other it is the determinant, subject to a certain side condition. For each, the authors give an efficient computing algorithm, and show that the estimator has, asymptotically, the maximum possible breakdown point. The main motivation is the need for efficient and robust estimation of cross-spectrum matrices, and they present a case study in which the data points originate as multichannel electroencephalogram recordings but are then summarized by the corresponding sample cross-spectrum matrices.
Palabras clave: Breakdown , Covariance Cross-Spectrum Matrix , Electroencephalogram Recording , Minimum Covariance Determinant , Trimmed Minimum Information Loss Estimate
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 756.3Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/15932
DOI: http://dx.doi.org/10.1016/j.csda.2012.06.011
URL: http://www.sciencedirect.com/science/article/pii/S0167947312002526
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Lind, John C.; Wiens, Douglas P.; Yohai, Victor Jaime; Robust minimum information loss estimation; Elsevier Science; Computational Statistics And Data Analysis; 65; 9-2013; 98-112
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES