Artículo
Effect of drying methods on drying kinetics, energy features, thermophysical and microstructural properties of Stevia rebaudiana leaves
Fecha de publicación:
05/2021
Editorial:
John Wiley & Sons Ltd
Revista:
Journal of the Science of Food and Agriculture
ISSN:
0022-5142
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
BACKGROUND: Stevia leaves were subjected to convective hot-air, infrared and vacuum drying at 40, 60 and 80 °C, followed byan assessment of thermophysical properties and microstructure, along with drying kinetics modelling and evaluation of energyfeatures for all drying operations.RESULTS: Effective moisture diffusivity (Deff) showed dependency on temperature with values ranging from 1.08 × 10−12 to7.43 × 10−12 m2 s−1 for convective drying, from 0.71 × 10−12 to 6.60 × 10−12 m2 s−1 for infrared drying, and from1.29 × 10−12 to 5.39 × 10−12 m2 s−1 for vacuum drying. The thermal properties of the dried Stevia leaves under different dryingconditions showed values of density, specific heat, thermal diffusivity, thermal conductivity and thermal effusivity rangingfrom 95.6 to 116.2 kg m−3, 3050 to 3900 J kg−1 K−1, 4.28 × 10−7 to 5.60 × 10−7 m2 s−1, 0.16 to 0.23 W m−1 K−1 and 244 to305 W s0.5 m−2 K−1, respectively. As for microstructure, convective hot-air drying showed better preserved leaf characteristics,compared to infrared- and vacuum-drying, whereby scanning electron microscopy (SEM) image analysis also revealed noticeable differences at higher temperatures. Statistical analysis showed that the Midilli?Kuçuk model fitted best the experimentaldata of drying curves (0.961 < r2 < 0.999, 0.000064 < SSE < 0.005359, and 0.000074 < χ 2 < 0.006278). Comparison of thedrying methods with respect to energy features showed that convective drying at 80 °C led to lowest specific energy consumption (61.86 kW h kg−1) with highest efficiency (8.5%).CONCLUSION: The results of this study contribute to a better understanding of the drying behaviour and showed that thermophysical properties of dried Stevia leaves and energy features are affected by drying methods.
Palabras clave:
STEVIA LEAVES
,
DRYING MODELLING
,
THERMAL PROPERTIES
,
SEM
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MAR DEL PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Citación
Lemus Mondaca, Roberto; Zura Bravo, Liliana; Ah Hen, Kong; Di Scala, Karina Cecilia; Effect of drying methods on drying kinetics, energy features, thermophysical and microstructural properties of Stevia rebaudiana leaves; John Wiley & Sons Ltd; Journal of the Science of Food and Agriculture; 5-2021; 1-12
Compartir
Altmétricas