Mostrar el registro sencillo del ítem

dc.contributor.author
Abalos, Julio Fernando  
dc.date.available
2022-05-31T14:31:35Z  
dc.date.issued
2018-11  
dc.identifier.citation
Abalos, Julio Fernando; A necessary condition ensuring the strong hyperbolicity of first-order systems; World Scientific; Journal Of Hyperbolic Differential Equations; 16; 1; 11-2018; 193-221  
dc.identifier.issn
0219-8916  
dc.identifier.uri
http://hdl.handle.net/11336/158589  
dc.description.abstract
We study strong hyperbolicity of first order partial differential equationsfor systems with differential constraints. In these cases, the number ofequations is larger than the unknown fields, therefore, the standard Kreissnecessary and sufficient conditions of strong hyperbolicity do not directlyapply. To deal with this problem one introduces a new tensor, called areduction, which selects a subset of equations with the aim of using them asevolution equations for the unknown. If that tensor leads to a stronglyhyperbolic system we call it a hyperbolizer. There might exist many of themor none.A question arises on whether a given system admits any hyperbolization atall. To sort-out this issue, we look for a condition on the system, suchthat, if it is satisfied, there is no hyperbolic reduction. To that purposewe look at the singular value decomposition of the whole system and studycertain one parameter families ($arepsilon $) of perturbations of theprincipal symbol. We look for the perturbed singular values around thevanishing ones and show that if they behave as $Oleft( arepsilon^{l}ight) $, with $lgeq 2$, then there does not exist any hyperbolizer.In addition, we further notice that the validity or failure of thiscondition can be established in a simple and invariant way.Finally we apply the theory to examples in physics, such as Force-FreeElectrodynamics in Euler potentials form and charged fluids with finiteconductivity. We find that they do not admit any hyperbolization.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
World Scientific  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Strong hyperbolicity  
dc.subject
Evolution and constraint equations  
dc.subject
Singular Value Decomposition  
dc.subject
Force-Free Electrodynamic  
dc.subject.classification
Física de Partículas y Campos  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A necessary condition ensuring the strong hyperbolicity of first-order systems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-04-26T17:37:30Z  
dc.identifier.eissn
1793-6993  
dc.journal.volume
16  
dc.journal.number
1  
dc.journal.pagination
193-221  
dc.journal.pais
Singapur  
dc.description.fil
Fil: Abalos, Julio Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina  
dc.journal.title
Journal Of Hyperbolic Differential Equations  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1142/S0219891619500073  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219891619500073