Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A necessary condition ensuring the strong hyperbolicity of first-order systems

Abalos, Julio FernandoIcon
Fecha de publicación: 11/2018
Editorial: World Scientific
Revista: Journal Of Hyperbolic Differential Equations
ISSN: 0219-8916
e-ISSN: 1793-6993
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de Partículas y Campos

Resumen

We study strong hyperbolicity of first order partial differential equationsfor systems with differential constraints. In these cases, the number ofequations is larger than the unknown fields, therefore, the standard Kreissnecessary and sufficient conditions of strong hyperbolicity do not directlyapply. To deal with this problem one introduces a new tensor, called areduction, which selects a subset of equations with the aim of using them asevolution equations for the unknown. If that tensor leads to a stronglyhyperbolic system we call it a hyperbolizer. There might exist many of themor none.A question arises on whether a given system admits any hyperbolization atall. To sort-out this issue, we look for a condition on the system, suchthat, if it is satisfied, there is no hyperbolic reduction. To that purposewe look at the singular value decomposition of the whole system and studycertain one parameter families ($arepsilon $) of perturbations of theprincipal symbol. We look for the perturbed singular values around thevanishing ones and show that if they behave as $Oleft( arepsilon^{l}ight) $, with $lgeq 2$, then there does not exist any hyperbolizer.In addition, we further notice that the validity or failure of thiscondition can be established in a simple and invariant way.Finally we apply the theory to examples in physics, such as Force-FreeElectrodynamics in Euler potentials form and charged fluids with finiteconductivity. We find that they do not admit any hyperbolization.
Palabras clave: Strong hyperbolicity , Evolution and constraint equations , Singular Value Decomposition , Force-Free Electrodynamic
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 430.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/158589
DOI: https://doi.org/10.1142/S0219891619500073
URL: https://www.worldscientific.com/doi/abs/10.1142/S0219891619500073
Colecciones
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Citación
Abalos, Julio Fernando; A necessary condition ensuring the strong hyperbolicity of first-order systems; World Scientific; Journal Of Hyperbolic Differential Equations; 16; 1; 11-2018; 193-221
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES