Mostrar el registro sencillo del ítem
dc.contributor.author
Baggio, Maria Cecilia
dc.contributor.author
Cecchini, Rocío Luján
dc.contributor.author
Maguitman, Ana Gabriela
dc.contributor.author
Milios, Evangelos
dc.date.available
2022-05-20T00:18:46Z
dc.date.issued
2019
dc.identifier.citation
MOGP Strategies for Topical Search Using Wikipedia; The 19th ACM Symposium on Document Engineering; Berlin; Alemania; 2019; 1-11
dc.identifier.isbn
978-1-4503-6887-2
dc.identifier.uri
http://hdl.handle.net/11336/157872
dc.description.abstract
Genetic Programming techniques have demonstrated great potential in dealing with the problem of query generation. In order to assist the user with thematic recommendations, this work explores different Multi-Objective Genetic Programming strategies for evolving a collection of topical Boolean queries. This study compares three approaches to build topical Boolean queries: using terms, incorporating Wikipedia semantics (Wikipedia concepts) and a hybrid approach, using a combination of both terms and concepts. In addition, different fitness functions are combined giving rise to seven multi-objective schemes. In particular, we propose novel fitness functions aimed at attaining high diversity based on the information-theoretic notion of entropy and Jaccard similarity. Experiments were completed using 25 topics from a dataset consisting of approximately 350,000 webpages classified into 448 topics. The results reveal that there are no statistically significant improvements in efficiency when terms, concepts or a combination h of both is used. However, the use of terms allows to discover rartificial queries that are hard to interpret by the humans. On the contrary, the use of concepts have a positive effect on interpretability and simplicity (considering the number of operands), resulting in better execution times. In ddition, p several differences are observed when using different combinations of fitness o functions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Association for Computing Machinery
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
TROPICAL RECOMMENDATION
dc.subject
RECALL MAXIMIZATION
dc.subject
SIMILARITY MEASURES
dc.subject
WIKIFICATION
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
MOGP Strategies for Topical Search Using Wikipedia
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2021-06-11T15:00:15Z
dc.journal.pagination
1-11
dc.journal.pais
Estados Unidos
dc.journal.ciudad
New York
dc.description.fil
Fil: Baggio, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Cecchini, Rocío Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Milios, Evangelos. Dalhousie University Halifax; Canadá
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://doceng.org/doceng2019
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/doi/proceedings/10.1145/3342558
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Simposio
dc.description.nombreEvento
The 19th ACM Symposium on Document Engineering
dc.date.evento
2019-09-23
dc.description.ciudadEvento
Berlin
dc.description.paisEvento
Alemania
dc.type.publicacion
Book
dc.description.institucionOrganizadora
Association for Computing Machinery
dc.source.libro
DocEng '19: Proceedings of the ACM Symposium on Document Engineering 2019
dc.date.eventoHasta
2019-09-26
dc.type
Simposio
Archivos asociados