Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

MOGP Strategies for Topical Search Using Wikipedia

Baggio, Maria Cecilia; Cecchini, Rocío LujánIcon ; Maguitman, Ana GabrielaIcon ; Milios, Evangelos
Tipo del evento: Simposio
Nombre del evento: The 19th ACM Symposium on Document Engineering
Fecha del evento: 23/09/2019
Institución Organizadora: Association for Computing Machinery;
Título del Libro: DocEng '19: Proceedings of the ACM Symposium on Document Engineering 2019
Editorial: Association for Computing Machinery
ISBN: 978-1-4503-6887-2
Idioma: Inglés
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Genetic Programming techniques have demonstrated great potential in dealing with the problem of query generation. In order to assist the user with thematic recommendations, this work explores different Multi-Objective Genetic Programming strategies for evolving a collection of topical Boolean queries. This study compares three approaches to build topical Boolean queries: using terms, incorporating Wikipedia semantics (Wikipedia concepts) and a hybrid approach, using a combination of both terms and concepts. In addition, different fitness functions are combined giving rise to seven multi-objective schemes. In particular, we propose novel fitness functions aimed at attaining high diversity based on the information-theoretic notion of entropy and Jaccard similarity. Experiments were completed using 25 topics from a dataset consisting of approximately 350,000 webpages classified into 448 topics. The results reveal that there are no statistically significant improvements in efficiency when terms, concepts or a combination h of both is used. However, the use of terms allows to discover rartificial queries that are hard to interpret by the humans. On the contrary, the use of concepts have a positive effect on interpretability and simplicity (considering the number of operands), resulting in better execution times. In ddition, p several differences are observed when using different combinations of fitness o functions.
Palabras clave: TROPICAL RECOMMENDATION , RECALL MAXIMIZATION , SIMILARITY MEASURES , WIKIFICATION
Ver el registro completo
 
Archivos asociados
Tamaño: 1.018Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/157872
URL: https://doceng.org/doceng2019
URL: https://dl.acm.org/doi/proceedings/10.1145/3342558
Colecciones
Eventos(CCT - BAHIA BLANCA)
Eventos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
MOGP Strategies for Topical Search Using Wikipedia; The 19th ACM Symposium on Document Engineering; Berlin; Alemania; 2019; 1-11
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES