Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Classification based on dynamic mode decomposition applied to brain recognition of context

Martínez, Sebastián; Silva, AzulIcon ; García Violini, Diego DemiánIcon ; Piriz, JoaquinIcon ; Belluscio, Mariano AndresIcon ; Sanchez Peña, Ricardo SalvadorIcon
Fecha de publicación: 09/2021
Editorial: Pergamon-Elsevier Science Ltd
Revista: Chaos, Solitons And Fractals
ISSN: 0960-0779
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

Local Field Potentials (LFPs) are easy to access electrical signals of the brain that represent the summation in the extracellular space, of currents originated within the neurons. As such, LFPs could contain information about ongoing computations in neuronal circuits and could potentially be used to design brain machine interface algorithms. However how brain computations could be decoded from LFPs is not clear. Within this context, a methodology for signal classification is proposed in this study, particularly based on the Dynamic Mode Decomposition method, in conjunction with binary clustering routines based on supervised learning. Note that, although the classification methodology is presented here in the context of a biological problem, it can be applied to a broad range of applications. Then, as a case-study, the proposed method is validated with the classification of LFP-based brain cognitive states. All the analysis, signals, and results shown in this study consider real data measured in the hippocampus, in rats performing exploration tasks. Consequently, it is shown that, using the measured LFP, the method infers which context was the animal exploring. Thus, evidence on the spatial codification in LFP signals is consequently provided, which still is an open question in neuroscience.
Palabras clave: CONTEXT EXPLORATION , LOCAL FIELD POTENTIAL , DYNAMICAL MODEL , DYNAMIC MODE DECOMPOSITION
Ver el registro completo
 
Archivos asociados
Tamaño: 1.468Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/157808
URL: https://www.sciencedirect.com/science/article/abs/pii/S0960077921004100
DOI: https://doi.org/10.1016/j.chaos.2021.111056
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Martínez, Sebastián; Silva, Azul; García Violini, Diego Demián; Piriz, Joaquin; Belluscio, Mariano Andres; et al.; Classification based on dynamic mode decomposition applied to brain recognition of context; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 150; 9-2021; 1-6
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES