Mostrar el registro sencillo del ítem

dc.contributor.author
Kordon, Francisco  
dc.contributor.author
Lambre, Thierry  
dc.date.available
2022-05-16T17:03:14Z  
dc.date.issued
2021-01  
dc.identifier.citation
Kordon, Francisco; Lambre, Thierry; Lie–Rinehart and Hochschild cohomology for algebras of differential operators; Elsevier Science; Journal of Pure and Applied Algebra; 225; 1; 1-2021; 1-28  
dc.identifier.issn
0022-4049  
dc.identifier.uri
http://hdl.handle.net/11336/157638  
dc.description.abstract
Let be a Lie–Rinehart algebra such that L is S-projective and let U be its universal enveloping algebra. In this paper we present a spectral sequence which converges to the Hochschild cohomology of U with values on a U-bimodule M and whose second page involves the Lie–Rinehart cohomology of the algebra and the Hochschild cohomology of S with values on M. After giving a convenient description of the involved algebraic structures we use the spectral sequence to compute explicitly the Hochschild cohomology of the algebra of differential operators tangent to a central arrangement of three lines.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
HOCHSCHILD COHOMOLOGY  
dc.subject
LIE-RINEHART ALGEBRAS  
dc.subject
ALGEBRAS OF DIFFERENTIAL OPERATORS  
dc.subject
HYPERPLANE ARRANGEMENTS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Lie–Rinehart and Hochschild cohomology for algebras of differential operators  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-03-09T22:12:06Z  
dc.journal.volume
225  
dc.journal.number
1  
dc.journal.pagination
1-28  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Kordon, Francisco. Universite Blaise Pascal. Laboratoire de Mathematiques; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Lambre, Thierry. Universite Blaise Pascal. Laboratoire de Mathematiques; Francia. Centre National de la Recherche Scientifique; Francia  
dc.journal.title
Journal of Pure and Applied Algebra  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022404920301560  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jpaa.2020.106456  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2006.01218