Artículo
Lie–Rinehart and Hochschild cohomology for algebras of differential operators
Fecha de publicación:
01/2021
Editorial:
Elsevier Science
Revista:
Journal of Pure and Applied Algebra
ISSN:
0022-4049
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let be a Lie–Rinehart algebra such that L is S-projective and let U be its universal enveloping algebra. In this paper we present a spectral sequence which converges to the Hochschild cohomology of U with values on a U-bimodule M and whose second page involves the Lie–Rinehart cohomology of the algebra and the Hochschild cohomology of S with values on M. After giving a convenient description of the involved algebraic structures we use the spectral sequence to compute explicitly the Hochschild cohomology of the algebra of differential operators tangent to a central arrangement of three lines.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Kordon, Francisco; Lambre, Thierry; Lie–Rinehart and Hochschild cohomology for algebras of differential operators; Elsevier Science; Journal of Pure and Applied Algebra; 225; 1; 1-2021; 1-28
Compartir
Altmétricas