Mostrar el registro sencillo del ítem

dc.contributor.author
Alvarez, Roberto  
dc.contributor.author
Steinbach, Haydee Sara  
dc.contributor.author
Bono, Alfredo  
dc.date.available
2017-04-25T15:26:02Z  
dc.date.issued
2011-06  
dc.identifier.citation
Alvarez, Roberto; Steinbach, Haydee Sara; Bono, Alfredo; An artificial neural network approach for predicting soil carbon budget in agroecosystems; Soil Sci Soc Amer; Soil Science Society Of America Journal; 75; 3; 6-2011; 965-975  
dc.identifier.issn
0361-5995  
dc.identifier.uri
http://hdl.handle.net/11336/15702  
dc.description.abstract
Soil quality has been associated with its organic matter content. Additionally, much effort has gone into understanding the C cycle and generating models suitable for C flux prediction. We used published data from long-term tillage experiments performed in the Pampas of Argentina, where CO2–C emissions from organic C pools were determined in the field, for developing empirical models suitable for C flux emission prediction. We also performed 113 field experiments with corn (Zea mays L.), wheat (Triticum aestivum L.), and soybean [Glycine max (L.) Merr.] to determine crop C inputs to the soil. Two empirical modeling techniques were tested: polynomial regression and artificial neural networks. Both methodologies generated good models with R2 ranging from 0.70 to 0.86. Nevertheless, neural networks performed better than regressions, with significantly lower RMSE values for both CO2–C emissions and C input prediction. Daily CO2–C emissions could be predicted by the neural network (R2 = 0.86) using soil C content, temperature, and moisture level as independent variables. Crop C inputs (R2 = 0.85) were estimated using crop type, yield, and rainfall during the growing cycle. The models were used for evaluating of the impact of soybean introduction in rotations during the 1970 to 1980 decade. Despite soybean C inputs to the soil being lower than those of wheat and corn, which were replaced in rotations, soil C budgets are similar compared with the 1970 to 1980 period, or changed from negative to positive at the present. These changes were associated with yield increases ascribed to technological improvement that resulted in greater C inputs from graminaceous crops.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Soil Sci Soc Amer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Carbon Budget  
dc.subject
Agroecosystems  
dc.subject
Neural Network  
dc.subject.classification
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
An artificial neural network approach for predicting soil carbon budget in agroecosystems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-04-24T20:43:14Z  
dc.journal.volume
75  
dc.journal.number
3  
dc.journal.pagination
965-975  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Alvarez, Roberto. Universidad de Buenos Aires. Facultad de Agronomia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; Argentina  
dc.description.fil
Fil: Steinbach, Haydee Sara. Universidad de Buenos Aires. Facultad de Agronomia; Argentina  
dc.description.fil
Fil: Bono, Alfredo. Instituto Nacional de Tecnología Agropecuaria. Centro Regional la Pampa-San Luis. Estación Experimental Agropecuaria Anguil; Argentina  
dc.journal.title
Soil Science Society Of America Journal  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://dl.sciencesocieties.org/publications/sssaj/abstracts/75/3/965?access=0&view=pdf  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2136/sssaj2009.0427