Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An artificial neural network approach for predicting soil carbon budget in agroecosystems

Alvarez, RobertoIcon ; Steinbach, Haydee Sara; Bono, Alfredo
Fecha de publicación: 06/2011
Editorial: Soil Sci Soc Amer
Revista: Soil Science Society Of America Journal
ISSN: 0361-5995
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente

Resumen

Soil quality has been associated with its organic matter content. Additionally, much effort has gone into understanding the C cycle and generating models suitable for C flux prediction. We used published data from long-term tillage experiments performed in the Pampas of Argentina, where CO2–C emissions from organic C pools were determined in the field, for developing empirical models suitable for C flux emission prediction. We also performed 113 field experiments with corn (Zea mays L.), wheat (Triticum aestivum L.), and soybean [Glycine max (L.) Merr.] to determine crop C inputs to the soil. Two empirical modeling techniques were tested: polynomial regression and artificial neural networks. Both methodologies generated good models with R2 ranging from 0.70 to 0.86. Nevertheless, neural networks performed better than regressions, with significantly lower RMSE values for both CO2–C emissions and C input prediction. Daily CO2–C emissions could be predicted by the neural network (R2 = 0.86) using soil C content, temperature, and moisture level as independent variables. Crop C inputs (R2 = 0.85) were estimated using crop type, yield, and rainfall during the growing cycle. The models were used for evaluating of the impact of soybean introduction in rotations during the 1970 to 1980 decade. Despite soybean C inputs to the soil being lower than those of wheat and corn, which were replaced in rotations, soil C budgets are similar compared with the 1970 to 1980 period, or changed from negative to positive at the present. These changes were associated with yield increases ascribed to technological improvement that resulted in greater C inputs from graminaceous crops.
Palabras clave: Carbon Budget , Agroecosystems , Neural Network
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 655.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/15702
URL: https://dl.sciencesocieties.org/publications/sssaj/abstracts/75/3/965?access=0&v
DOI: http://dx.doi.org/10.2136/sssaj2009.0427
Colecciones
Articulos(OCA PQUE. CENTENARIO)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA PQUE. CENTENARIO
Citación
Alvarez, Roberto; Steinbach, Haydee Sara; Bono, Alfredo; An artificial neural network approach for predicting soil carbon budget in agroecosystems; Soil Sci Soc Amer; Soil Science Society Of America Journal; 75; 3; 6-2011; 965-975
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES