Mostrar el registro sencillo del ítem
dc.contributor.author
Carballido, Jessica Andrea
dc.contributor.author
Ponzoni, Ignacio
dc.contributor.author
Cecchini, Rocío Luján
dc.contributor.other
de la Cal, Enrique Antonio
dc.contributor.other
Quintián, Héctor
dc.contributor.other
Corchado, Emilio
dc.date.available
2022-05-10T04:47:59Z
dc.date.issued
2020
dc.identifier.citation
PreCLAS: An evolutionary tool for unsupervised feature selection; 15th International Conference on Hybrid Artificial Intelligence Systems; Guijón; España; 2020; 172–182
dc.identifier.isbn
978-3-030-61705-9
dc.identifier.uri
http://hdl.handle.net/11336/157024
dc.description.abstract
Several research areas are being faced with data matrices that are not suitable to be managed with traditional clustering, regression, or classification strategies. For example, biological so-called omic problems present models with thousands or millions of rows and less than a hundred columns. This matrix structure hinders the successful progress of traditional data analysis methods and thus needs some means for reducing the number of rows. This article presents an unsupervised approach called PreCLAS for preprocessing matrices with dimension problems to obtain data that are apt for clustering and classification strategies. The PreCLAS was implemented as an unsupervised strategy that aims at finding a submatrix with a drastically reduced number of rows, preferring those rows that together present some group structure. Experimentation was carried out in two stages. First, to assess its functionality, a benchmark dataset was studied in a clustering context. Then, a microarray dataset with genomic information was analyzed, and the PreCLAS was used to select informative genes in the context of classification strategies. Experimentation showed that the new method performs successfully at drastically reducing the number of rows of a matrix, smartly performing unsupervised feature selection for both classification and clustering problems.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Cham
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
UNSUPERVISED MACHINE LEAMING
dc.subject
CLASSIFICATION STRATEGIES
dc.subject
EVOLUTIONARY ALGORITHM
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
PreCLAS: An evolutionary tool for unsupervised feature selection
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2022-03-16T19:44:40Z
dc.journal.volume
12344
dc.journal.pagination
172–182
dc.journal.pais
Alemania
dc.journal.ciudad
Cham
dc.description.fil
Fil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Cecchini, Rocío Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-030-61705-9_15
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-030-61705-9_15
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Conferencia
dc.description.nombreEvento
15th International Conference on Hybrid Artificial Intelligence Systems
dc.date.evento
2020-11-11
dc.description.ciudadEvento
Guijón
dc.description.paisEvento
España
dc.type.publicacion
Book
dc.description.institucionOrganizadora
Universidad de Oviedo
dc.source.revista
Proceedings: Artificial Intelligent Systems
dc.date.eventoHasta
2020-11-13
dc.type
Conferencia
Archivos asociados