Mostrar el registro sencillo del ítem

dc.contributor.author
Carballido, Jessica Andrea  
dc.contributor.author
Ponzoni, Ignacio  
dc.contributor.author
Cecchini, Rocío Luján  
dc.contributor.other
de la Cal, Enrique Antonio  
dc.contributor.other
Quintián, Héctor  
dc.contributor.other
Corchado, Emilio  
dc.date.available
2022-05-10T04:47:59Z  
dc.date.issued
2020  
dc.identifier.citation
PreCLAS: An evolutionary tool for unsupervised feature selection; 15th International Conference on Hybrid Artificial Intelligence Systems; Guijón; España; 2020; 172–182  
dc.identifier.isbn
978-3-030-61705-9  
dc.identifier.uri
http://hdl.handle.net/11336/157024  
dc.description.abstract
Several research areas are being faced with data matrices that are not suitable to be managed with traditional clustering, regression, or classification strategies. For example, biological so-called omic problems present models with thousands or millions of rows and less than a hundred columns. This matrix structure hinders the successful progress of traditional data analysis methods and thus needs some means for reducing the number of rows. This article presents an unsupervised approach called PreCLAS for preprocessing matrices with dimension problems to obtain data that are apt for clustering and classification strategies. The PreCLAS was implemented as an unsupervised strategy that aims at finding a submatrix with a drastically reduced number of rows, preferring those rows that together present some group structure. Experimentation was carried out in two stages. First, to assess its functionality, a benchmark dataset was studied in a clustering context. Then, a microarray dataset with genomic information was analyzed, and the PreCLAS was used to select informative genes in the context of classification strategies. Experimentation showed that the new method performs successfully at drastically reducing the number of rows of a matrix, smartly performing unsupervised feature selection for both classification and clustering problems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Cham  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
UNSUPERVISED MACHINE LEAMING  
dc.subject
CLASSIFICATION STRATEGIES  
dc.subject
EVOLUTIONARY ALGORITHM  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
PreCLAS: An evolutionary tool for unsupervised feature selection  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2022-03-16T19:44:40Z  
dc.journal.volume
12344  
dc.journal.pagination
172–182  
dc.journal.pais
Alemania  
dc.journal.ciudad
Cham  
dc.description.fil
Fil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Cecchini, Rocío Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-030-61705-9_15  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-030-61705-9_15  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Conferencia  
dc.description.nombreEvento
15th International Conference on Hybrid Artificial Intelligence Systems  
dc.date.evento
2020-11-11  
dc.description.ciudadEvento
Guijón  
dc.description.paisEvento
España  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Universidad de Oviedo  
dc.source.revista
Proceedings: Artificial Intelligent Systems  
dc.date.eventoHasta
2020-11-13  
dc.type
Conferencia