Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

PreCLAS: An evolutionary tool for unsupervised feature selection

Carballido, Jessica AndreaIcon ; Ponzoni, IgnacioIcon ; Cecchini, Rocío LujánIcon
Colaboradores: de la Cal, Enrique Antonio; Quintián, Héctor; Corchado, Emilio
Tipo del evento: Conferencia
Nombre del evento: 15th International Conference on Hybrid Artificial Intelligence Systems
Fecha del evento: 11/11/2020
Institución Organizadora: Universidad de Oviedo;
Título de la revista: Proceedings: Artificial Intelligent Systems
Editorial: Springer Cham
ISBN: 978-3-030-61705-9
Idioma: Inglés
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Several research areas are being faced with data matrices that are not suitable to be managed with traditional clustering, regression, or classification strategies. For example, biological so-called omic problems present models with thousands or millions of rows and less than a hundred columns. This matrix structure hinders the successful progress of traditional data analysis methods and thus needs some means for reducing the number of rows. This article presents an unsupervised approach called PreCLAS for preprocessing matrices with dimension problems to obtain data that are apt for clustering and classification strategies. The PreCLAS was implemented as an unsupervised strategy that aims at finding a submatrix with a drastically reduced number of rows, preferring those rows that together present some group structure. Experimentation was carried out in two stages. First, to assess its functionality, a benchmark dataset was studied in a clustering context. Then, a microarray dataset with genomic information was analyzed, and the PreCLAS was used to select informative genes in the context of classification strategies. Experimentation showed that the new method performs successfully at drastically reducing the number of rows of a matrix, smartly performing unsupervised feature selection for both classification and clustering problems.
Palabras clave: UNSUPERVISED MACHINE LEAMING , CLASSIFICATION STRATEGIES , EVOLUTIONARY ALGORITHM
Ver el registro completo
 
Archivos asociados
Tamaño: 487.4Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/157024
URL: https://link.springer.com/chapter/10.1007/978-3-030-61705-9_15
DOI: http://dx.doi.org/10.1007/978-3-030-61705-9_15
Colecciones
Eventos(CCT - BAHIA BLANCA)
Eventos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
PreCLAS: An evolutionary tool for unsupervised feature selection; 15th International Conference on Hybrid Artificial Intelligence Systems; Guijón; España; 2020; 172–182
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES