Mostrar el registro sencillo del ítem
dc.contributor.author
Lederman, Claudia Beatriz

dc.contributor.author
Vazquez, Juan Luis
dc.contributor.author
Wolanski, Noemi Irene

dc.date.available
2022-05-03T18:23:02Z
dc.date.issued
2001-12
dc.identifier.citation
Lederman, Claudia Beatriz; Vazquez, Juan Luis; Wolanski, Noemi Irene; Uniqueness in a two phase free boundary problem; Khayyam; Advances In Differential Equations; 6; 12; 12-2001; 1409-1442
dc.identifier.issn
1079-9389
dc.identifier.uri
http://hdl.handle.net/11336/156386
dc.description.abstract
We investigate a two-phase free-boundary problem in heat propagation that in classical terms is formulated as follows: to find a continuous function u(x, t) defined in a domain D ⊂ RN × (0, T) which satisfies the equation ∆u + Σ ai uxi − ut = 0 whenever u(x, t) = 0, i.e., in the subdomains D+ = {(x, t) ∈ D : u(x, t) > 0} and D− = {(x, t) ∈ D : u(x, t) < 0}. Besides, we assume that both subdomains are separated by a smooth hypersurface, the free boundary, whose normal is never time-oriented and on which the following conditions are satisfied: u = 0, |∇u+| 2 − |∇u−| 2 = 2M. Here M > 0 is a fixed constant, and the gradients are spatial sidederivatives in the usual two-phase sense. In addition, initial data are specified, as well as either Dirichlet or Neumann data on the parabolic boundary of D. The problem admits classical solutions only for good data and for small times. To overcome this problem several generalized concepts of solution have been proposed, among them the concepts of limit solution and viscosity solution. Continuing the work done for the one-phase problem we investigate conditions under which the three concepts agree and produce a unique solution for the two-phase problem.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Khayyam
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Perturbacion singular
dc.subject
Dos fases
dc.subject
Unicidad
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Uniqueness in a two phase free boundary problem
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-12-03T20:49:47Z
dc.journal.volume
6
dc.journal.number
12
dc.journal.pagination
1409-1442
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Lederman, Claudia Beatriz. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Vazquez, Juan Luis. Universidad Autonoma de Madrid; España
dc.description.fil
Fil: Wolanski, Noemi Irene. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Advances In Differential Equations

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/journals/advances-in-differential-equations/volume-6/issue-12/Uniqueness-in-a-two-phase-free-boundary-problem/ade/1357139953.full
Archivos asociados