Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Uniqueness in a two phase free boundary problem

Lederman, Claudia BeatrizIcon ; Vazquez, Juan Luis; Wolanski, Noemi IreneIcon
Fecha de publicación: 12/2001
Editorial: Khayyam
Revista: Advances In Differential Equations
ISSN: 1079-9389
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

We investigate a two-phase free-boundary problem in heat propagation that in classical terms is formulated as follows: to find a continuous function u(x, t) defined in a domain D ⊂ RN × (0, T) which satisfies the equation ∆u + Σ ai uxi − ut = 0 whenever u(x, t) = 0, i.e., in the subdomains D+ = {(x, t) ∈ D : u(x, t) > 0} and D− = {(x, t) ∈ D : u(x, t) < 0}. Besides, we assume that both subdomains are separated by a smooth hypersurface, the free boundary, whose normal is never time-oriented and on which the following conditions are satisfied: u = 0, |∇u+| 2 − |∇u−| 2 = 2M. Here M > 0 is a fixed constant, and the gradients are spatial sidederivatives in the usual two-phase sense. In addition, initial data are specified, as well as either Dirichlet or Neumann data on the parabolic boundary of D. The problem admits classical solutions only for good data and for small times. To overcome this problem several generalized concepts of solution have been proposed, among them the concepts of limit solution and viscosity solution. Continuing the work done for the one-phase problem we investigate conditions under which the three concepts agree and produce a unique solution for the two-phase problem.
Palabras clave: Perturbacion singular , Dos fases , Unicidad
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 318.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/156386
URL: https://projecteuclid.org/journals/advances-in-differential-equations/volume-6/i
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Lederman, Claudia Beatriz; Vazquez, Juan Luis; Wolanski, Noemi Irene; Uniqueness in a two phase free boundary problem; Khayyam; Advances In Differential Equations; 6; 12; 12-2001; 1409-1442
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES