Mostrar el registro sencillo del ítem

dc.contributor.author
Tapavicza, Enrico  
dc.contributor.author
Von Rudorff, Guido Falk  
dc.contributor.author
De Haan, David O.  
dc.contributor.author
Contin, Mario Daniel  
dc.contributor.author
George, Christian  
dc.contributor.author
Riva, Matthieu  
dc.contributor.author
Von Lilienfeld, O. Anatole  
dc.date.available
2022-04-22T14:48:53Z  
dc.date.issued
2021-06  
dc.identifier.citation
Tapavicza, Enrico; Von Rudorff, Guido Falk; De Haan, David O.; Contin, Mario Daniel; George, Christian; et al.; Elucidating an Atmospheric Brown Carbon Species - Toward Supplanting Chemical Intuition with Exhaustive Enumeration and Machine Learning; American Chemical Society; Environmental Science & Technology; 6-2021; 1-11  
dc.identifier.issn
0013-936X  
dc.identifier.uri
http://hdl.handle.net/11336/155551  
dc.description.abstract
Brown carbon (BrC) is involved in atmospheric light absorption and climate forcing and can cause adverse health effects. Understanding the formation mechanisms and molecular structure of BrC is of key importance in developing strategies to control its environment and health impact. Structure determination of BrC is challenging, due to the lack of experiments providing molecular fingerprints and the sheer number of molecular candidates with identical mass. Suggestions based on chemical intuition are prone to errors due to the inherent bias. We present an unbiased algorithm, using graph-based molecule generation and machine learning, which can identify all molecular structures of compounds involved in biomass burning and the composition of BrC. We apply this algorithm to C12H12O7, a light-absorbing "test case"molecule identified in chamber experiments on the aqueous photo-oxidation of syringol, a prevalent marker in wood smoke. Of the 260 million molecular graphs, the algorithm leaves only 36,518 (0.01%) as viable candidates matching the spectrum. Although no unique molecular structure is obtained from only a chemical formula and a UV/vis absorption spectrum, we discuss further reduction strategies and their efficacy. With additional data, the method can potentially more rapidly identify isomers extracted from lab and field aerosol particles without introducing human bias.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BIOMASS BURNING  
dc.subject
CHEMICAL DIVERSITY  
dc.subject
CHEMICAL SPACE  
dc.subject
LIGHT ABSORPTION  
dc.subject
OLIGOMERS  
dc.subject
STRUCTURE DETERMINATION  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Elucidating an Atmospheric Brown Carbon Species - Toward Supplanting Chemical Intuition with Exhaustive Enumeration and Machine Learning  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-04-21T16:39:41Z  
dc.journal.pagination
1-11  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Tapavicza, Enrico. California State University; Estados Unidos  
dc.description.fil
Fil: Von Rudorff, Guido Falk. Universidad de Viena; Austria  
dc.description.fil
Fil: De Haan, David O.. University of California at San Diego; Estados Unidos  
dc.description.fil
Fil: Contin, Mario Daniel. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina  
dc.description.fil
Fil: George, Christian. Universite Claude Bernard Lyon 1. Institut de Physique Nucléaire de Lyon.; Francia  
dc.description.fil
Fil: Riva, Matthieu. Universite Claude Bernard Lyon 1. Institut de Physique Nucléaire de Lyon.; Francia  
dc.description.fil
Fil: Von Lilienfeld, O. Anatole. Universidad de Viena; Austria  
dc.journal.title
Environmental Science & Technology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.est.1c00885