Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Elucidating an Atmospheric Brown Carbon Species - Toward Supplanting Chemical Intuition with Exhaustive Enumeration and Machine Learning

Tapavicza, Enrico; Von Rudorff, Guido Falk; De Haan, David O.; Contin, Mario DanielIcon ; George, Christian; Riva, Matthieu; Von Lilienfeld, O. Anatole
Fecha de publicación: 06/2021
Editorial: American Chemical Society
Revista: Environmental Science & Technology
ISSN: 0013-936X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

Brown carbon (BrC) is involved in atmospheric light absorption and climate forcing and can cause adverse health effects. Understanding the formation mechanisms and molecular structure of BrC is of key importance in developing strategies to control its environment and health impact. Structure determination of BrC is challenging, due to the lack of experiments providing molecular fingerprints and the sheer number of molecular candidates with identical mass. Suggestions based on chemical intuition are prone to errors due to the inherent bias. We present an unbiased algorithm, using graph-based molecule generation and machine learning, which can identify all molecular structures of compounds involved in biomass burning and the composition of BrC. We apply this algorithm to C12H12O7, a light-absorbing "test case"molecule identified in chamber experiments on the aqueous photo-oxidation of syringol, a prevalent marker in wood smoke. Of the 260 million molecular graphs, the algorithm leaves only 36,518 (0.01%) as viable candidates matching the spectrum. Although no unique molecular structure is obtained from only a chemical formula and a UV/vis absorption spectrum, we discuss further reduction strategies and their efficacy. With additional data, the method can potentially more rapidly identify isomers extracted from lab and field aerosol particles without introducing human bias.
Palabras clave: BIOMASS BURNING , CHEMICAL DIVERSITY , CHEMICAL SPACE , LIGHT ABSORPTION , OLIGOMERS , STRUCTURE DETERMINATION
Ver el registro completo
 
Archivos asociados
Tamaño: 2.136Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/155551
DOI: http://dx.doi.org/10.1021/acs.est.1c00885
Colecciones
Articulos(OCA HOUSSAY)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA HOUSSAY
Citación
Tapavicza, Enrico; Von Rudorff, Guido Falk; De Haan, David O.; Contin, Mario Daniel; George, Christian; et al.; Elucidating an Atmospheric Brown Carbon Species - Toward Supplanting Chemical Intuition with Exhaustive Enumeration and Machine Learning; American Chemical Society; Environmental Science & Technology; 6-2021; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES