Mostrar el registro sencillo del ítem
dc.contributor.author
Favier, Sergio José
dc.contributor.author
Zo, Felipe
dc.date.available
2017-04-21T16:00:12Z
dc.date.issued
2011-08
dc.identifier.citation
Favier, Sergio José; Zo, Felipe; Maximal inequalities for a best approximation operator in Orlicz spaces; Adam Mickiewicz University in Poznań. Faculty of Mathematics and Computer Sciences; Commentationes Mathematicae; 51; 1; 8-2011; 3-21
dc.identifier.issn
2080-1211
dc.identifier.uri
http://hdl.handle.net/11336/15554
dc.description.abstract
In this paper we study a maximal operator Mf related with the best ϕ approximation by constants for a function f ∈ L ϕ 0 loc(ℝn), where we denote by ϕ 0 for the derivative function of the C1 convex function ϕ. We get a necessary and sufficient condition which assure strong inequalities of the type R ℝn θ(M|f|) dx ¬ K R ℝn θ(|f|) dx, where K is a constant independent of f. Some pointwise and mean convergence results are obtained. In the particular case ϕ(t) = t p+1 we obtain several equivalent conditions on the functions θ that assures strong inequalities of this type.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Adam Mickiewicz University in Poznań. Faculty of Mathematics and Computer Sciences
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
Best Φ− Approximations by Constants
dc.subject
Extended Best Approximation Operator
dc.subject
Maximal Inequalities
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Maximal inequalities for a best approximation operator in Orlicz spaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-04-18T14:26:25Z
dc.journal.volume
51
dc.journal.number
1
dc.journal.pagination
3-21
dc.journal.pais
Polonia
dc.journal.ciudad
Poznań
dc.description.fil
Fil: Favier, Sergio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis ; Argentina
dc.description.fil
Fil: Zo, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis ; Argentina
dc.journal.title
Commentationes Mathematicae
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://wydawnictwa.ptm.org.pl/index.php/commentationes-mathematicae/index
Archivos asociados