Artículo
Maximal inequalities for a best approximation operator in Orlicz spaces
Fecha de publicación:
08/2011
Editorial:
Adam Mickiewicz University in Poznań. Faculty of Mathematics and Computer Sciences
Revista:
Commentationes Mathematicae
ISSN:
2080-1211
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we study a maximal operator Mf related with the best ϕ approximation by constants for a function f ∈ L ϕ 0 loc(ℝn), where we denote by ϕ 0 for the derivative function of the C1 convex function ϕ. We get a necessary and sufficient condition which assure strong inequalities of the type R ℝn θ(M|f|) dx ¬ K R ℝn θ(|f|) dx, where K is a constant independent of f. Some pointwise and mean convergence results are obtained. In the particular case ϕ(t) = t p+1 we obtain several equivalent conditions on the functions θ that assures strong inequalities of this type.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMASL)
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Citación
Favier, Sergio José; Zo, Felipe; Maximal inequalities for a best approximation operator in Orlicz spaces; Adam Mickiewicz University in Poznań. Faculty of Mathematics and Computer Sciences; Commentationes Mathematicae; 51; 1; 8-2011; 3-21
Compartir